Section 1.1: THE DISTANCE AND MIDPOINT FORMULAS; GRAPHING UTILITIES; INTRODUCTION TO GRAPHING EQUATIONS

When you are done with your homework you should be able to...
π Use the Distance Formula
π Use the Midpoint Formula
π Graph Equations by Hand by Plotting Points
π Graph Equations Using a Graphing Utility
π Use a Graphing Utility to Create Tables
π Find Intercepts from a Graph
π Use a Graphing Utility to Approximate Intercepts

W ARM-UP:

What grade do you want to earn in this class?
For each unit, how many hours should you spend on the class?
How many hours for "class time"?
How many hours for homework, test prep, etc.?
When should you work on math?

RECTANGULAR COORDINATES

We locate a \qquad on the real number line by assigning it a single real number, called the \qquad of the point. For work in a twodimensional \qquad points are located by using \qquad numbers.

The rectangular or Cartesian coordinate system consists of \qquad real number lines, one \qquad and one \qquad . The horizontal line is called the \qquad and the vertical line is called the \qquad .

The point of intersection is located at the ordered pair \qquad and is
called the \qquad . Assign \qquad to every point on these number lines using a convenient scale. The scale of a number line is the distance between \qquad and \qquad . Once you set the scale, it stays the same on that particular axis. Sometimes the scale on the x - and y-axes differ. For example, if you are sketching a line that has x-coordinates that can be easily viewed using a scale between -6 and 6 and y-coordinates that are better viewed between -1 and 1, you may want to set the scale for the x-axis as \qquad and the y axis as \qquad -.

Points on the x-axis to the right of O are associated with \qquad real numbers, and those to the \qquad of O are associated with
\qquad real numbers. Points on the y-axis above O are associated with \qquad real numbers, and those \qquad O are associated with \qquad real numbers. The \qquad divide the
\qquad into \qquad regions, called \qquad . The points located on the \qquad are \qquad in any quadrant. Each
in the rectangular coordinate system \qquad to an
\qquad
\qquad of real numbers, \qquad .

Example 1:
a. Plot the following ordered pairs. Identify which quadrant or on what coordinate axis each point lies.
$A=(2,5)$
$B=(-3,7)$
$C=(-2,0)$

b. Plot the points $(0,3),(1,3),(5,3),(-4,3)$. Describe the set of all points of the form $(x, 3)$ where x is a real number.

GRAPHING UTILITIES

All graphing utilities graph equations by \qquad points. The screen itself consists of small rectangles, called \qquad . The more pixels the screen has, the better the resolution. When a point to be plotted lies inside a pixel, the pixel is turned on (lights up). The graph of an equation is a collection of pixels.

The screen of a graphing calculator will display the coordinate axes of a rectangular coordinate system, but you need to set the \qquad on each axis. You must also include the \qquad and \qquad values of \qquad and \qquad that you want included in the graph. This is called
\qquad the \qquad
\qquad or

Xmin: the \qquad value of \qquad shown on the viewing window

Xmax: the \qquad value of \qquad shown on the viewing window

Xscl: the number of \qquad per \qquad mark on the \qquad
Ymin: the \qquad value of \qquad shown on the viewing window
$Y_{\text {max }}$ the \qquad value of \qquad shown on the viewing window

Yscl: the number of \qquad per \qquad mark on the \qquad

Example 2:

a. Find the coordinates of the point shown below. Assume the coordinates are integers.

b. Determine the viewing window used.

Xmin: \qquad
Xmax: \qquad
Xscl: \qquad
$Y_{\text {min: }}$ \qquad
$Y_{\text {max }}$ \qquad
Yscl: \qquad

DISTANCE FORMULA

The distance between two points \qquad and \qquad denoted by is

Example 3: Find the distance between each pair of points.
a. $\quad P_{1}=(-4,-3)$ and $P_{2}=(6,2)$
b. $P_{1}=(a, a)$ and $P_{2}=(0,0)$

Example 4: Consider the points $A=(-2,5), B=(12,3)$, and $C=(10,11)$.
a. Plot each point and form the triangle $A B C$.

b. Verify that the triangle is a right triangle.
c. Find its area

THE MIDPOINT FORMULA

Consider a line segment whose endpoints are \qquad and \qquad The midpoint, \qquad is

Example 5: Find the midpoint of the line joining the points P_{1} and P_{2}.
a. $\quad P_{1}=(1,4)$ and $P_{2}=(-2,7)$
b. $P_{1}=(a, a)$ and $P_{2}=(0,0)$

GRAPH EQUATIONS BY HAND BY PLOTTING POINTS

An \qquad in \qquad , say \qquad and \qquad is a statement in which two expressions involving x and y are \qquad . The expressions are called the \qquad of the equation. Since an equation is a statement, it may be \qquad or \qquad , depending on the value of the variables. Any values of x and y that result in a true statement are said to
\qquad the equation.

The \qquad of an \qquad in \qquad
x and y consists of the \qquad of points in the \qquad plane whose coordinates \qquad satisfy the equation.

Example 6: Tell whether the given points are on the graph of the equation.
Equation: $y=x^{3}-2 \sqrt{x}$
Points: $(0,0) ;(1,1) ;(1,-1)$

GRAPHING EQUATIONS USING A GRAPHING UTILITY

To graph an equation in two variables x and y using a graphing calculator requires that the dependent variable, y, be isolated.

PROCEDURES THAT RESULT IN EQUIVALENT EQUATIONS

1. Interchange the two sides of the equation:
\qquad is equivalent to \qquad
2. Simplify the sides of the equation by combining like terms, eliminating parentheses, etc.:
\qquad is equivalent to \qquad
3. Add or subtract the same expression on both sides of the equation: is equivalent to \qquad
4. Multiply or divide both sides of the equation by the same nonzero expression: is equivalent to \qquad

Example 7: Solve for y.
a. $5-(x-3)=2 y+6\left(\frac{1}{2} y-1\right)$
b. $4 y-x^{2}=3$

HOW TO GRAPH AN EQUATION USING THE TI-83/TI-84 GRAPHING

 CALCULATOR1. Solve the equation for \qquad in terms of \qquad .
2. Enter the equation to be graphed into your graphing calculator.
a. Use the " $y=$ " key.

b. Graph the equation using the standard viewing window.

c. Adjust the viewing window.

HOW TO USE THE TI-83/TI-84 TO CREATE TABLES

1. Solve the equation for \qquad in terms of \qquad .
2. Enter the equation to be graphed into your graphing calculator. $\psi_{4}^{3}=$
$\psi_{5}=$
$v_{7}=$
$4=$
3. Set up the table. In the AUTO mode, the user determines the starting point for the table and delta table, which determines the increment for x in the table. The ASK mode requires the user to enter values of x, and then the calculator determines the value of y.

4. Create the table.

Example 8: The graph of an equation is given. List the intercepts of the graph.
a.

b.

Example 9: Graph each equation by hand by plotting points. Verify your results using a graphing utility.
a. $y=3 x-9$

x	$y=3 x-9$	(x, y)

b. $y=-x^{2}+1$

x	$y=-x^{2}+1$	(x, y)

APPLICATIONS

A major league baseball "diamond" is actually a square, 90 feet on a side. What is the distance directly from home plate to second base (the diagonal of a square)? Give the exact simplified result first, and then round to the nearest hundredth.

Section 1.2: INTERCEPTS; SYMMETRY, GRAPHING KEY EQUATIONS When you are done with your homework you should be able to...
π Find Intercepts Algebraically from an Equation
π Test an Equation for Symmetry
π Know How to Graph Key Equations
Warm-up: Solve.
a. $3 x-4(2 x-8)=3-5 x$
b. $2 x^{2}-x=3$

PROCEDURE FOR FINDING INTERCEPTS

1. To find the if any, of the graph of an equation, let \qquad in the equation and solve for \qquad where \qquad is a real number.
2. To find the \qquad , if any, of the graph of an equation, let \qquad in the equation and solve for \qquad where \qquad is a real number.

Example 1: Find the intercepts and graph each equation by plotting points.
a. $y=x-6$

x	$y=x-6$	(x, y)

b. $4 x^{2}+y=4$

x	$4 x^{2}+y=4$	(x, y)

DEFINITION: SYMMETRY
A graph is said to be symmetric with respect to the \qquad if, for every point \qquad on the graph, the point \qquad is also on the graph.

A graph is said to be symmetric with respect to the \qquad if, for every point \qquad on the graph, the point \qquad is also on the graph.

A graph is said to be symmetric with respect to the \qquad if, for every point \qquad on the graph, the point \qquad is also on the graph.

TESTS FOR SYMMETRY

\qquad equation results, the graph of the equation is \qquad with respect to the \qquad .

Example 2: Plot the point $(4,-2)$.
Plot the point that is symmetric to $(4,-2)$ with respect to the
a. x-axis
b. y-axis
c. origin

Example 3: Draw a complete graph so that it has the type of symmetry indicated.
a. x-axis

b. y-axis

c. origin

Example 4: List the intercepts and test for symmetry.

a. $y^{2}=x+9$
b. $y=x^{4}-2 x^{2}-8$
c. $y=\sqrt[5]{x}$
d. $y=\frac{x^{4}+1}{2 x^{5}}$

Example 5: If $(a,-5)$ is on the graph of $y=x^{2}+6 x$, what is a ?

KNOW HOW TO GRAPH KEY EQUATIONS

Example 6: Sketch the graph using intercepts and symmetry.
a. $y=\frac{1}{x}$

x	$y=\frac{1}{x}$	(x, y)

b. $x=y^{2}$

$x=y^{2}$	y	(x, y)

c. $y=x^{3}$

x	$y=x^{3}$	(x, y)

1.3: SOLVING EQUATIONS USING A GRAPHING UTILITY

When you are done with your homework, you should be able to...
π Solve Equations Using a TI-83/TI-84 Graphing Calculator Warm-up: Solve for y.
a. $-x-8 y=7$
b. $x^{3}-2 y=6$

SOLVE EQUATIONS USING A TI-83/TI-84 GRAPHING CALCULATOR

When a graphing calculator is used to solve an equation, usually solutions are obtained. Unless otherwise stated, we will approximate solutions as decimals rounded to \qquad decimal places. The \qquad or \qquad feature of a graphing calculator can be used to find the solutions of an equation when one side of the equation is \qquad . In using this feature to solve equations, we make use of
the fact that when the graph of an equation in \qquad variables, \qquad and
\qquad , crosses or touches the \qquad then \qquad .

For this reason, any value of \qquad for which \qquad will be a to the equation. That is, solving an equation for \qquad when one side of the equation is 0 is equivalent to finding where the graph of the corresponding equation in two variables crosses or touches the \qquad .

STEPS FOR APPROXIMATING SOLUTIONS OF EQUATIONS USING ZERO OR ROOT

1. \qquad y. So you will have $y=\{$ expression in $x\}$.
2. Graph \qquad .
3. Use ZERO or ROOT to determine each \qquad of the graph.

Example 1: Use ZERO or ROOT to approximate the real solutions, if any, of each equation rounded to two decimal places.
a. $-3 x^{4}+8 x^{2}-2 x-9=0$
b. $x^{3}-8 x+1=0$

STEPS FOR APPROXIMATING SOLUTIONS OF EQUATIONS USING INTERSECT

1. Graph \qquad and graph \qquad
2. Use INTERSECT to determine the \qquad of each point in the intersection.

Example 2: Use ZERO or ROOT to approximate the real solutions, if any, of each equation rounded to two decimal places.
a. $-x^{4}+1=2 x^{2}-3$
b. $\frac{1}{4} x^{3}-5 x=\frac{1}{5} x^{2}-4$

Example 3: Solve each equation algebraically. Verify your solution using a graphing calculator.
a. $5-(2 x-1)=10-x$
b. $\frac{4}{y}-5=\frac{18}{2 y}$
c. $x^{3}+2 x^{2}-9 x-18=0$

1.4: LINES

When you are done with your homework, you should be able to...
π Calculate and Interpret the Slope of a Line
π Graph Lines Given a Point and the Slope
π Find the Equation of a Vertical Line
π Use the Point-Slope Form of a Line; Identify Horizontal Lines
π Find the Equation of a Line Given Two Points
π Write the Equation of a Line in Slope Intercept Form
π Identify the Slope and y-Intercept of a Line from Its Equation
π Graph Lines Written in General Form Using Intercepts
π Find Equations of Parallel Lines
π Find Equations of Perpendicular Lines
Warm-up: Solve.
$-5 x+2(1-3 x)=x-3$

CALCULATE AND INTERPRET THE SLOPE OF A LINE

Consider the staircase to the left. Each step contains exactly the same horizontal
\qquad and the same vertical
\qquad . The ratio of the rise to the run, called the \qquad , is a numerical measure of the \qquad of the staircase.

DEFINITION

\square and \qquad be two distinct points. If the \qquad , \qquad of the nonvertical line L
containing P and Q, is defined by the formula

If \qquad L is a \qquad line and the slope m of L is (since this results in division by \qquad).

Example 1: Determine the slope of the line containing the given points.
a. $(4,2) ;(3,4)$
b. $(-1,1) ;(2,3)$
c. $(2,0) ;(2,2)$

SQUARE SCREENS

To get an undistorted view of slope, the same \qquad must be used on each axis. Most graphing calculators have a rectangular screen. Because of this, using the same interval for x and y will result in a distorted view. On most graphing calculators, you can obtain a square screen by setting the ratio of x to y at \qquad .

Example 2: On the same square screen, graph the following equations:

$$
\begin{aligned}
& y_{1}=0 \\
& y_{2}=\frac{1}{2} x \\
& y_{3}=x \\
& y_{4}=4 x
\end{aligned}
$$

Example 3: On the same square screen, graph the following equations:

$$
\begin{aligned}
& y_{1}=0 \\
& y_{2}=-\frac{1}{2} x \\
& y_{3}=-x \\
& y_{4}=-4 x
\end{aligned}
$$

1. When the slope of a line is positive, the line slants \qquad from left to right.
2. When the slope of a line is negative, the line slants from left to right.
3. When the slope is zero, the line is \qquad .

Example 3: Graph the line containing the point P and having slope m. List two additional points that are on the line.
a. $P=(2,1) ; m=4$

EQUATION OF A VERTICAL LINE

b. $P=(1,3) ; m=-\frac{2}{5}$

A vertical line is given by an equation of the form
where \qquad is the \qquad .

POINT-SLOPE FORM OF A LINE

An equation of a nonvertical line with slope m that contains the point \qquad is

EQUATION OF A HORIZONTAL LINE

A horizontal line is given by an equation of the form
where \qquad is the \qquad .

FINDING AN EQUATION OF A LINE GIVEN TWO POINTS

EXAMPLE 4: Find an equation of the line containing the points $(5,-1)$ and $(-6,8)$. Graph the line.

SLOPE-INTERCEPT FORM OF A LINE

An equation of a line with slope m and y-intercept b is

IDENTIFY THE SLOPE AND y-INTERCEPT OF A LINE GIVEN ITS EQUATION

EXAMPLE 5: Find the slope m and y-intercept b of the given equation. Graph the equation.
a. $y=5 x+2$

b. $2 x-3 y=9$

EQUATION OF A LINE IN GENERAL FORM

The equation of a line in general form is
where \qquad
\qquad and \qquad are real numbers and A and B are not both zero.

GRAPHING AN EQUATION IN GENERAL FORM USING ITS INTERCEPTS

EXAMPLE 6: Graph the equation $-4 x+2 y=-12$ by finding its intercepts.

x	y	(x, y)

FIND EQUATIONS OF PARALLEL LINES

When two lines in the plane do not \qquad they are said to be

CRITERION FOR PARALLEL LINES

Two nonvertical lines are \qquad if and only if their \qquad are \qquad and they have different \qquad .

SHOWING THAT TWO LINES ARE PARALLEL

EXAMPLE 7: Show that the lines given by the following equations are parallel.

$$
\begin{aligned}
& y=-x+4 \\
& x+y=-1
\end{aligned}
$$

FIND EQUATIONS OF PERPENDICULAR LINES

When two lines \qquad at a \qquad angle \qquad they are said to be \qquad .

CRITERION FOR PERPENDICULAR LINES
Two nonvertical lines are \qquad if and only if the product of their is \qquad .

SHOWING THAT TWO LINES ARE PERPENDICULAR

EXAMPLE 8: Show that the lines given by the following equations are perpendicular.

$$
\begin{aligned}
& y=\frac{1}{2} x-10 \\
& y=-2 x-\frac{1}{3}
\end{aligned}
$$

FINDING THE EQUATION OF A LINE GIVEN INFORMATION

The following examples will guide you on how to find the equation of a line when you are given different types of information.

EXAMPLE 9: Find an equation for the line with the given properties. Express your answer using the general form and the slope-intercept form.
a. Slope $=2$; containing the point $(4,-3)$.
b. Slope $=$ undefined; containing the point $\left(\frac{1}{2}, 7\right)$.
c. x-intercept is $-4 ; y$-intercept is 4
d. Containing the points $(-3,4)$ and $(2,5)$.
e. Parallel to the line $x-2 y=-5$; containing the point $(-5,1)$.
f. Perpendicular to the line $y=8$; containing the point $(3,4)$.

EXAMPLE 10: The equations of two lines are given. Determine if the lines are parallel, perpendicular, or neither.
a.

$$
\begin{aligned}
& y=4 x+5 \\
& y=-4 x+2
\end{aligned}
$$

b.

$$
\begin{aligned}
& y=\frac{1}{3} x-3 \\
& y=-3 x+4
\end{aligned}
$$

2.1: FUNCTIONS

When you are done with your homework, you should be able to...
π Determine Whether a Relation Represents a Function
π Find the Value of a Function
π Find the Domain of a Function Defined by an Equation
π Form the Sum, Difference, Product, and Quotient of Two Functions
WARM-UP: Find the value(s) of x for which the rational expression $\frac{x-1}{2 x^{2}-x-10}$ is undefined.

DETERMINE WHETHER A RELATION REPRESENTS A FUNCTION

When the \qquad of one variable is \qquad to the value of a second variable, we have a \qquad . A relation is a
\qquad . If \qquad and
\qquad are two elements in these sets and if a relation exists between \qquad and \qquad then we say that \qquad
\qquad to \qquad or that
\qquad on \qquad and we write \qquad .

Relations can be expressed as an \qquad , \qquad , and/or a \qquad .

Example 1: Find the domain and range of the relation.

VEHICLE	NUMBER OF WHEELS
CAR	4
MOTORCYCLE	2
BOAT	0

DEFINITION OF A FUNCTION

Let ____ and ____ represent two nonempty sets. A \qquad from into ___ is a relation that associates with each \qquad of exactly \qquad element of \qquad .

FUNCTIONS AS EQUATIONS AND FUNCTION NOTATION

Functions are often given in terms of \qquad rather than as \qquad of \qquad . Consider the equation below, which
describes the position of an object, in feet, dropped from a height of 500 feet after x seconds.

$$
y=-16 x^{2}+500
$$

The variable \qquad is a \qquad of the variable \qquad . For each value of x,
there is one and only one value of \qquad . The variable x is called the
\qquad any value from
the \qquad . The variable y is called the \qquad variable
because its value \qquad on x. When an \qquad
represents a \qquad the function is often named by a letter such as
f, g, h, F, G, or H. Any letter can be used to name a function. The domain is the \qquad of the function's \qquad and the range is the \qquad of the function's \qquad . If we name our function \qquad the input is represented by \qquad , and the output is represented by \qquad . The notation
\qquad is read "___ of ___" or "___ at ___. So we may rewrite $y=-16 x^{2}+500$
as \qquad . Now let's evaluate our function after 1 second:

Example 2: Determine whether each relation represents a function. Then identify the domain and range.
a. $\{(-6,1),(-1,1),(0,1),(1,1),(2,1)\}$

b. $\{(3,3),(-2,0),(4,0),(-2,-5)\}$

Example 3: Find the indicated function values for

a. $f(4)$
b. $3 f(-2)$
c. $f(x+1)$
d. $\frac{f(x+h)-f(x)}{h}, h \neq 0$

Example 4: Find the indicated function and domain values using the table below.
a. $h(-2)$
b. $h(1)$

x	$h(x)$
-2	2
-1	1
0	0
1	1
2	2

c. For what values of x is $h(x)=1$?

Example 5: Determine if the following equations define y as a function of x.
a. $x y=5$
b. $x^{2}+y^{2}=16$

FINDING VALUES OF A FUNCTION ON A CALCULATOR

Example 6: Let $f(x)=-x^{3}-x+2$. Use a graphing calculator to find the following values:
a. $f(4)$
b. $f(-2)$

STEPS FOR FINDING THE DOMAIN OF A FUNCTION DEFINED BY AN EQUATION

1. Start with the domain as the set of \qquad numbers.
2. If the equation has a denominator, \qquad any numbers that
give a \qquad denominator.
3. If the equation has a \qquad of even \qquad
exclude any numbers that cause the expression inside the radical to be

Example 7: Find the domain of each of the following functions.
a. $h(x)=\sqrt{2 x-1}$
b. $g(x)=\frac{8 x}{x^{2}-81}$

THE ALGEBRA OF FUNCTIONS

Consider the following two functions:

$$
f(x)=2 x \text { and } g(x)=x-1
$$

Let's graph these two functions on the same coordinate plane.

Now find and graph the sum of f and g.
$(f+g)(x)=$

Now find and graph the difference of f and $g . f(x)=2 x$ and $g(x)=x-1$
$(f-g)(x)=$

Now find and graph the product of f and g on your graphing calculator.
$(f g)(x)=$

Now find and graph the quotient of f and g on your graphing calculator.
$\left(\frac{f}{g}\right)(x)=$

THE ALGEBRA OF FUNCTIONS: SUM, DIFFERENCE, PRODUCT, AND QUOTIENT OF FUNCTIONS
Let f and g be two functions. The ___ $f+g$, the __ $f-g$, the \qquad $f g$, and the \qquad $\frac{f}{g}$ are \qquad whose domains are the set of all real numbers \qquad to the domains of f and g, defined as follows:

1. Sum: \qquad
2. Difference: \qquad
3. Product: \qquad
4. Quotient: \qquad , provided \qquad

Example 8: Let $f(x)=x^{2}+4 x$ and $g(x)=2-x$. Find the following:
a. $(f+g)(x)$
d. $(f g)(x)$
b. $(f+g)(4)$
e. $(f g)(3)$
c. $f(-3)+g(-3)$
f. The domain of $\left(\frac{f}{g}\right)(x)$

2.2: THE GRAPH OF A FUNCTION

When you are done with your homework, you should be able to...
π Identify the Graph of a Function
π Obtain Information from or about the Graph of a Function
W ARM-UP:
Graph the following equations by plotting points.
a. $y=x^{2}$

b. $y=3 x-1$

THE VERTICAL LINE TEST FOR FUNCTIONS

If any vertical line___ a graph in more than___ point,
the graph________ as a function of _____

Example 1: Determine whether the graph is that of a function.
a.

b.

C.

OBTAINING INFORMATION FROM GRAPHS

You can obtain information about a function from its graph. At the right or left of a graph, you will often find \qquad dots, \qquad dots, or \qquad .
π A closed dot indicates that the graph does not \qquad beyond this point and the \qquad belongs to the \qquad
π An open dot indicates that the graph does not \qquad beyond this point and the \qquad DOES NOT belong to the \qquad
π An arrow indicates that the graph extends \qquad in the direction in which the arrow \qquad

INTERVAL NOTATION	SET-BUILDER NOTATION	GRAPH
(a, b)		$\longleftrightarrow x$
$[a, b]$		$\longleftrightarrow x$
$[a, b)$		$\longleftrightarrow x$
$(a, b]$		$\longleftrightarrow x$
(a, ∞)		$\longleftrightarrow x$
$[a, \infty)$		$\longleftrightarrow x$
$(-\infty, b)$		$\longleftrightarrow x$
$(-\infty, b]$		\longleftrightarrow
$(-\infty, \infty)$		

Example 2: Use the graph of f to determine each of the following.
f

a. $f(0)$
b. $f(-2)$
c. For what value of x is $f(x)=3$?
d. The domain of f
e. The range of f

Example 3: Graph the following functions by plotting points and identify the domain and range.
a. $f(x)=-x-2$

b. $H(x)=x^{2}+1$

Example 4: Consider the function $f(x)=\frac{x^{2}+2}{x+4}$.
a. Is the point $\left(1, \frac{3}{5}\right)$ on the graph?
b. If $x=0$, what is $f(x)$? What point is on the graph of f ?
c. If $f(x)=\frac{1}{2}$, what is x ? What point(s) are on the graph of f ?
d. What is the domain of f ?
e. List the x-intercepts, if any, of the graph of f.
f. List the y-intercepts, if any, of the graph of f. APPLICATION

If an object weighs m pounds at sea level, then its weight W, in pounds, at a height of h miles above sea level is given approximately by

$$
W(h)=m\left(\frac{4000}{4000+h}\right)^{2}
$$

a. If Amy weighs 120 pounds at sea level, how much will she weigh on Pike's Peak, which is 14,110 feet above sea level?
b. Use a graphing calculator to graph the function $W=W(h)$.
c. Create a TABLE with TblStart $=0$ and $\Delta \mathrm{Tbl}=0.5$ to see how the weight W varies as h changes from 0 to 5 miles.
d. At what height will Amy weigh 119.95 pounds?
e. Does your answer to part d seem reasonable? Explain.

2.3: PROPERTIES OF FUNCTIONS

When you are done with your homework you should be able to...
π Determine Even and Odd functions from a Graph
π Identify Even and Odd functions from the Equation
π Use a Graph to Determine Where a Function is Increasing, Decreasing, or Constant
π Use a Graph to Locate Local Maxima and Local Minima
π Use a Graph to Locate the Absolute Maximum and Absolute Minimum
π Use a Graphing Utility to Approximate Local Maxima and Local Minima
π Find the Average Rate of Change of a Function
WARM-UP: Test the equation $y=-x^{2}+3$ for symmetry with respect to the x-axis, y-axis, and the origin.

EVEN FUNCTIONS

A function f is \qquad if, for every number \qquad in its domain, the
number \qquad is also in the domain and

ODD FUNCTIONS

A function f is \qquad if, for every number \qquad in its domain, the number \qquad is also in the domain and

THEOREM

A function is \qquad if and only if its graph is symmetric with respect to the \qquad . A function is \qquad if and only if its graph is symmetric with respect to the \qquad .

Example 1: Determine whether each graph given below is the graph of an even function, an odd function, or a function that is neither even nor odd.
a.

b.

c.

Example 2: Determine algebraically whether each function is even, odd, or neither.
a. $h(x)=3 x^{3}+5$
b. $F(x)=\frac{2 x}{|x|}$
c. $f(x)=2 x^{4}-x^{2}$

INCREASING/DECREASING/CONSTANT INTERVALS OF A FUNCTION A function f is______ on an open______ for any choice of \qquad and \qquad in I, with \qquad , we have \qquad
A function f is \qquad on an open \qquad if, for any choice of \qquad and \qquad in I, with \qquad , we have \qquad
A function f is \qquad on an open \qquad
\qquad if, for
all choices of \qquad in I, the values of \qquad are \qquad .
\qquad

LOCAL EXTREMA

A function f has a \qquad at \qquad if there is an open interval I containing c so that for all x in I, \qquad We call
a \qquad
\square of \qquad .

A function f has a \qquad $a t$ \qquad if there is an open
interval I containing c so that for all x in I, \qquad We call
a \qquad
\qquad
\qquad of \qquad .
**NOTE: The word \qquad is used to suggest that it is only near \qquad , that is, in some open interval containing c, that the value of \qquad has these properties.
**NOTE: The \qquad is the local maximum or minimum value and it occurs at some \qquad .

Example 3: Consider the graph of the function given below.

a. On what interval(s) is f increasing?
b. On what interval(s) is f decreasing?
c. On what interval(s) is f constant?
d. List the local minima.
e. List the ordered pair(s) where a local minimum occurs.
f. List the local maxima.
g. List the ordered pair(s) where a local maximum occurs.

Let f denote a function defined on some interval I. If there is a number \qquad in

I for which \qquad for all x in I, then \qquad is the \qquad
of \qquad on \qquad and we say the \qquad
\qquad of \qquad occurs at \qquad .

If there is a number \qquad in I for which \qquad for all x in I, then is the \qquad
\qquad of \qquad on \qquad and we
say the \qquad
\qquad of \qquad occurs at \qquad .

Example 4: Find the absolute minimum and the absolute maximum, if they exist, of the following graphs below.
a.

The absolute minimum is \qquad .

The absolute minimum occurs at \qquad .

The absolute maximum is \qquad .

The absolute maximum occurs at \qquad .
b.

The absolute minimum is \qquad .

The absolute minimum occurs at \qquad .

The absolute maximum is \qquad .

The absolute maximum occurs at \qquad .

EXTREME VALUE THEOREM
If f is a continuous function whose domain is a closed interval $[a, b]$, then f has an \qquad and an \qquad on $[a, b]$.
**NOTE: You can consider a continuous function to be a function whose graph has no \qquad or \qquad and can be \qquad without lifting the pencil from the paper.

average rate of change

If ___ and ____ are in the domain of a function $y=f(x)$, the

Average rate of change $=$

Example 5: Find the average rate of change of $f(x)=-x^{3}+1$
a. From 0 to 2
b. From 1 to 3
c. From -1 to 1

THEOREM: SLOPE OF THE SECANT LINE

Example 6: Consider $h(x)=-2 x^{2}+x$
Find an equation of the secant line containing the x-coordinates 0 and 3 .
2.4: LIBRARY OF FUNCTIONS; PIECEWISE-DEFINED FUNCTIONS When you are done with your homework, you should be able to...
π Graph the Functions Listed in the Library of Functions
π Graph Piecewise-defined Functions
WARM-UP: Consider $f(x)=x^{4}-3$
a. What is the average rate of change from -1 to 2 .
b. Find an equation of the secant line containing the x-coordinates -1 and 2 .

THE LIBRARY OF FUNCTIONS

Example 1: Consider the function $f(x)=b$.
a. Determine whether $f(x)=b$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=b$.
c. Graph $f(x)=b$ by hand.

PROPERTIES OF $f(x)=b$

1. The domain is the set of \qquad numbers. The range of f is the set consisting of a single number \qquad .
2. The y-intercept of the graph of $f(x)=b$ is \qquad .
3. The graph is a \qquad line. The function is \qquad with respect to the \qquad . The function is \qquad .

Example 2: Consider the function $f(x)=x$.
a. Determine whether $f(x)=x$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=x$.
c. Graph $f(x)=x$ by hand.

PROPERTIES OF $f(x)=x$

1. The domain and range are the set of \qquad numbers.
2. The x-intercept of the graph of $f(x)=x$ is \qquad The y-intercept of the graph of $f(x)=x$ is \qquad .
3. The graph is \qquad with respect to the \qquad .
4. The function is \qquad .
5. The function is \qquad on the interval \qquad

Example 3: Consider the function $f(x)=x^{2}$.
a. Determine whether $f(x)=x^{2}$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=x^{2}$.
c. Graph $f(x)=x^{2}$ by hand.

PROPERTIES OF $f(x)=x^{2}$

1. The domain is the set of \qquad numbers. The range is the set of real numbers.
2. The x-intercept of the graph of $f(x)=x^{2}$ is \qquad . The y-intercept of the graph of $f(x)=x^{2}$ is \qquad .
3. The graph is \qquad with respect to the \qquad .
4. The function is \qquad .
5. The function is \qquad on the interval \qquad and \qquad on the interval \qquad .

Example 4: Consider the function $f(x)=x^{3}$.
a. Determine whether $f(x)=x^{3}$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=x^{3}$.
c. Graph $f(x)=x^{3}$ by hand.

PROPERTIES OF $f(x)=x^{3}$

1. The domain and range are the set of \qquad numbers.
2. The x-intercept of the graph of $f(x)=x^{3}$ is \qquad . The y-intercept of the graph of $f(x)=x^{3}$ is \qquad .
3. The graph is \qquad with respect to the \qquad .
4. The function is \qquad .
5. The function is \qquad on the interval \qquad .

Example 5: Consider the function $f(x)=\sqrt{x}$.
a. Determine whether $f(x)=\sqrt{x}$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=\sqrt{x}$.
c. Graph $f(x)=\sqrt{x}$ by hand.

PROPERTIES OF $f(x)=\sqrt{x}$

1. The domain and range are the set of
\qquad numbers.
2. The x-intercept of the graph of $f(x)=\sqrt{x}$ is \qquad . The y-intercept of the graph of $f(x)=\sqrt{x}$ is \qquad .
3. The function is \qquad
\qquad nor \qquad .
4. The function is \qquad on the interval \qquad .
5. The function has an \qquad
\qquad of \qquad at .

Example 6: Consider the function $f(x)=\sqrt[3]{x}$.
a. Determine whether $f(x)=\sqrt[3]{x}$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=\sqrt[3]{x}$.
c. Graph $f(x)=\sqrt[3]{x}$ by hand.

PROPERTIES OF $f(x)=\sqrt[3]{x}$

1. The domain and range are the set of \qquad numbers.
2. The x-intercept of the graph of $f(x)=\sqrt[3]{x}$ is \qquad . The y-intercept of the graph of $f(x)=\sqrt[3]{x}$ is \qquad .
3. The graph is \qquad with respect to the \qquad .
The function is \qquad .
4. The function is \qquad on the interval \qquad .
5. The function does not have any local \qquad or local

Example 7: Consider the function $f(x)=\frac{1}{x}$.
a. Determine whether $f(x)=\frac{1}{x}$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=\frac{1}{x}$.
c. Graph $f(x)=\frac{1}{x}$ by hand.

PROPERTIES OF $f(x)=\frac{1}{x}$

1. The domain and range are the set of all \qquad real numbers.
2. The graph of $f(x)=\frac{1}{x}$ has \qquad intercepts.
3. The graph is \qquad with respect to the \qquad .
4. The function is \qquad .
5. The function is \qquad on the interval \qquad and \qquad on the interval \qquad .

Example 8: Consider the function $f(x)=|x|$.
a. Determine whether $f(x)=|x|$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=|x|$.
c. Graph $f(x)=|x|$ by hand.

PROPERTIES OF $f(x)=|x|$

1. The domain is the set of \qquad numbers. The range of f is
2. The x-intercept of the graph of $f(x)=|x|$ is \qquad . The y-intercept of the graph of $f(x)=|x|$ is \qquad .
3. The graph is \qquad with respect to the \qquad .
The function is \qquad .
4. The function is \qquad on the interval \qquad and \qquad on the interval \qquad .
5. The function has an \qquad of \qquad at \qquad

Example 9: Consider the function $f(x)=\operatorname{int}(x)$.
a. Determine whether $f(x)=\operatorname{int}(x)$ is even, odd, or neither. State whether the graph is symmetric with respect to the y-axis or symmetric with respect to the origin.
b. Determine the intercepts, if any, of the graph of $f(x)=\operatorname{int}(x)$.
c. Graph $f(x)=\operatorname{int}(x)$ by hand.

PROPERTIES OF $f(x)=\operatorname{int}(x)$

1. The domain is the set of all \qquad numbers. The range is the set of
\qquad .
2. The x-intercepts lie on the interval \qquad . The y-intercept is \qquad .
3. The function is \qquad nor \qquad .
4. The function is \qquad on every interval of the form an \qquad .

Example 10: Sketch the graph of the following functions. Find the domain of each function. Locate any intercepts. Based on the graph, find the range. Is f continuous on its domain?
a. $f(x)= \begin{cases}-3 x & \text { if } x<-1 \\ 0 & \text { if } x=1 \\ 2 x^{2}+1 & \text { if } x>1\end{cases}$

b. $f(x)= \begin{cases}2-x & \text { if }-3 \leq x<1 \\ \sqrt{x} & \text { if } x>1\end{cases}$

APPLICATION

The short-term (no more than 24 hours) parking fee F (in dollars) for parking x hours at O'Hare International Airport's main parking garage can be modeled by the function
$F(x)= \begin{cases}2 & \text { if } 0<x \leq 1 \\ 4 & \text { if } 1<x \leq 3 \\ 10 & \text { if } 3<x \leq 4 \\ 5 \operatorname{int}(x+1)+2 & \text { if } 4<x<9 \\ 51 & \text { if } 9 \leq x \leq 24\end{cases}$

Determine the fee for parking in the short-term parking garage for
a. 2 hours
b. 7 hours
c. 15 hours
d. 8 hours and 24 minutes

2.5: GRAPHING TECHNIQUES: TRANSFORMATIONS

When you are done with your homework, you should be able to...
π Graph Functions Using Vertical and Horizontal Shifts
π Graph Functions Using Compressions and Stretches
π Graph Functions Using Reflections about the x-axis or y-axis
W ARM-UP:

1. Consider the functions

$$
\begin{aligned}
& Y_{1}=x^{3} \\
& Y_{2}=x^{3}+4 \\
& Y_{3}=x^{3}-4
\end{aligned}
$$

a. Graph each of the following functions on the same screen.
b. Create a table of values for Y_{1}, Y_{2}, and Y_{3}.
c. Describe Y_{2} in terms of Y_{1}.
d. Describe Y_{3} in terms of Y_{1}.
2. Consider the functions

$$
\begin{aligned}
& Y_{1}=x^{3} \\
& Y_{2}=(x-4)^{3} \\
& Y_{3}=(x+4)^{3}
\end{aligned}
$$

a. Graph each of the following functions on the same screen.
b. Create a table of values for Y_{1}, Y_{2}, and Y_{3}.
c. Describe Y_{2} in terms of Y_{1}.
d. Describe Y_{3} in terms of Y_{1}.
3. Consider the functions

$$
\begin{aligned}
& Y_{1}=x^{4} \\
& Y_{2}=2 x^{4} \\
& Y_{3}=\frac{1}{2} x^{4}
\end{aligned}
$$

a. Graph each of the following functions on the same screen.
b. Create a table of values for Y_{1}, Y_{2}, and Y_{3}.
c. Describe Y_{2} in terms of Y_{1}.
d. Describe Y_{3} in terms of Y_{1}.
4. Consider the functions

$$
\begin{aligned}
& Y_{1}=x^{4} \\
& Y_{2}=-x^{4}
\end{aligned}
$$

a. Graph each of the following functions on the same screen.
b. Create a table of values for Y_{1} and Y_{2}.
c. Describe Y_{2} in terms of Y_{1}.
5. Consider the functions

$$
\begin{aligned}
& Y_{1}=\sqrt{x} \\
& Y_{2}=\sqrt{-x}
\end{aligned}
$$

a. Graph each of the following functions on the same screen.
b. Create a table of values for Y_{1} and Y_{2}.
c. Describe Y_{2} in terms of Y_{1}.

DRAW THE GRAPH OF f AND: FUNCTIONAL CHANGE TO $f(x)$

VERTICAL SHIFTS

$$
\begin{aligned}
& y=f(x)+k, \quad k>0 \quad \text { the graph of } f \text { by ___ to } f(x) \text {. } \\
& \text { units. } \\
& y=f(x)-k, \quad k>0 \\
& \text { the graph of } f \text { by } \\
& \text { units. }
\end{aligned}
$$

HORIZONTAL SHIFTS

| $y=f(x+h), \quad h>0$ | the graph of f to the |
| :--- | :--- | :--- | :--- |
| $y=f(x-h), \quad h>0$ | |
| units. | |

COMPRESSING OR STRETCHING

$$
y=a f(x), \quad a>0
$$

$$
\text { of } y=f(x) \text { by }
$$

\qquad .

$$
f(x) \text { by }
$$

\qquad .
the graph of f if $a>1$.
\qquad the graph of f

$$
\text { if } 0<a<1
$$

$$
y=f(a x), \quad a>0
$$

of $y=f(x)$ by each \quad by_.

$$
\text { if } 0<a<1 \text {. }
$$

\qquad the graph of f

$$
\text { if } a>1 \text {. }
$$

REFLECTION ABOUT THE x-AXIS

$$
y=-f(x)
$$

about the_t the graph of f. \quad f(x) by__ .

REFLECTION ABOUT THE y-AXIS

$$
y=f(-x)
$$

Example 1: Write the function whose graph is $y=x^{2}$, but is
a. Shifted to the left 8 units.
d. Shifted to the up 8 units.
g. Shifted to the right 8 units.
b. Shifted down 8 units.
e. Vertically compressed by a factor of 8.
e. Reflected about the y-axis.
c. Reflected about the x-axis.
f. Horizontally
stretched by a factor of 8 units.

Example 2: Graph each function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages. Be sure to show at least three key points. Find the domain and range of each function.
a. $h(x)=\sqrt{x+1}$

Domain: \qquad
Range: \qquad
b. $f(x)=\frac{1}{2} \sqrt{x}$

Domain: \qquad
Range: \qquad

Domain: \qquad
Range: \qquad

Domain: \qquad
Range: \qquad
c. $g(x)=\sqrt{-x}-2$

Domain: \qquad Domain: \qquad
Range:
Range: \qquad Range: \qquad
d. $h(x)=\operatorname{int}(-x)$

Domain: \qquad
Range: \qquad
Example 3: Suppose that the function $y=f(x)$ is decreasing on the interval $(-2,7)$.
a. Over what interval is the graph of
$y=f(x+2)$
decreasing?
b. Over what interval is the graph of
$y=f(x-5)$
decreasing?

Domain: \qquad
Range: \qquad

2.6: MATHEMATICAL MODELS: BUILDING FUNCTIONS

When you are done with your homework you should be able to...
π Build and Analyze Functions
WARM-UP: Complete the following statements.

1. The sum of angles in a triangle is \qquad .
2. The distance between the ordered pairs $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
3. Distance $=$ \qquad .
4. The area of a rectangle is \qquad .
5. Perimeter is the \qquad of the \qquad of the \qquad of a polygon.
6. The area of a circle is \qquad .
7. The Pythagorean Theorem states: \qquad .

8. The volume of a right circular cylinder is \qquad .
9. The volume of a right circular cone is \qquad .
10. The volume of a sphere is \qquad .
11. The volume of a right rectangular prism is \qquad .
12. The volume of a right rectangular pyramid is \qquad .

Example 1: Let $P=(x, y)$ be a point on the graph of $y=\frac{1}{x}$.
a. Express the distance d from P to the origin as a function of x.
b. Use a graphing utility to graph $d=d(x)$.
c. For what values of x is d smallest?

Example 2: A right triangle has one vertex on the graph of $y=9-x^{2}, x>0$, at (x, y), another at the origin, and the third on the positive x-axis at $(x, 0)$. Express the area A of the triangle as a function of x.

Example 3: A rectangle is inscribed in a semicircle of radius 2. Let $P=(x, y)$ be the point in quadrant I that is a vertex of the rectangle and is on the circle.

a. Express the area A of the rectangle as a function of x.
b. Express the perimeter p of the rectangle as a function of x.
c. Graph $A=A(x)$. For what value of x is A largest?

d. Graph $p=p(x)$. For what value of x is p largest?

Example 3: Two cars leave an intersection at the same time. One is headed south at a constant speed of 30 mph and the other is headed west at a constant speed of 40 mph . Build a model that expresses the distance d between the cars as a function of time t.

Example 4: An open box with a square base is required to have a volume of 10 cubic feet.
a. Express the amount A of material used to make such a box as a function of the length x of a side of the square base.
b. How much material is required for a base 1 foot by 1 foot?
c. How much material is required for a base 2 feet by 2 feet?
d. Use a graphing utility to graph $A=A(x)$. For what value of x is A smallest?

3.1: LINEAR FUNCTIONS AND THEIR PROPERTIES

When you are done with your homework you should be able to...
π Graph Linear Functions
π Use Average Rate of Change to Identify Linear functions
π Determine Whether a Linear Function is Increasing, Decreasing, or Constant
π Build Linear Models From Verbal Descriptions
WARM-UP: Write the equation of the line which passes through the points $(-3,2)$ and $(5,7)$.

LINEAR FUNCTION

A linear function is a function of the form

The graph of a linear function is a \qquad with slope \qquad and y-intercept \qquad . Its domain is the set of all \qquad numbers.

Example 1: Graph the linear function: $f(x)=-\frac{2}{3} x-4$

average rate of change of a linear function

Linear functions have a \qquad average rate of change. The average rate of change of \qquad is

PROOF:

Example 2: Determine whether the given function is linear or nonlinear. If it is linear, determine the equation of the line.

x	$y=f(x)$
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4

x	$y=f(x)$
-4	8
-2	4
0	0
2	-4
4	-8

b.

INCREASING, DECREASING, AND CONSTANT LINEAR FUNCTIONS

A linear function \qquad is...
over its domain if its \qquad , \qquad , is
\qquad -.
over its domain if its \qquad , \qquad is
\qquad -
over its domain if its \qquad , \qquad is
\qquad .

Example 3: Determine whether the following linear functions are increasing, decreasing, or constant.
a. $f(x)=2-4 x$
b. $h(z)=-6$
c. $g(t)=0.02 t-0.35$

Example 4: Consider the following linear function.

$$
y=g(x)
$$

a. Solve $g(x)=-1$
b. Solve $g(x)=0$
c. Solve $g(x) \leq 3$
d. Solve $g(x)=5$
e. Solve $g(x)>-1$
f. Solve $0<g(x)<5$

APPLICATIONS

1. The monthly cost C, in dollars, for international calls on a certain cellular phone plan is modeled by the function $C(x)=0.38 x+5$, where x is the number of minutes used.
a. What is the cost if you talk on the phone for $x=50$ minutes?
b. Suppose that your monthly bill is $\$ 29.32$. How many minutes did use the phone?
c. Suppose that you budget yourself $\$ 60$ per month for the phone. What is the maximum number of minutes that you can talk?
d. What is the implied domain of C if there are 30 days in the month?
e. Interpret the slope.
f. Interpret the y-intercept.
2. Suppose that the quantity supplied S and quantity demanded D of hot dogs at a baseball game are given by the following functions:

$$
\begin{aligned}
& S(p)=-2000+3000 p \\
& D(p)=10,000-1000 p
\end{aligned}
$$

where p is the price of a hot dog.
a. Find the equilibrium price for hot dogs at the baseball game. What is the equilibrium quantity?
b. Determine the prices for which quantity demanded is less than quantity supplied.
c. What do you think will eventually happen to the price of hot dogs if quantity demanded is less than quantity supplied?

3.3: QUADRATIC FUNCTIONS AND THEIR PROPERTIES

When you are done with your homework, you should be able to...
π Graph a Quadratic Function Using Transformations
π Identify the Vertex and Axis of Symmetry of a Quadratic Function
π Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts
π Find a Quadratic Function Given Its Vertex and One Other Point
π Find the Maximum or Minimum Value of a Quadratic Function
W ARM-UP:

1. Graph $f(x)=x^{2}$.

2. Complete the square of the expression $x^{2}+6 x-1$

Graphs like the one we just did in the warm-up problem are the graphs of functions, commonly called \qquad .

Parabolas open upward if the coefficient to the squared term is \qquad and downward if the coefficient to the squared term is \qquad .

Parabolas have a "fold" line, that is, they have symmetry
about a vertical line. This vertical line is found when you find the ordered pair where the \qquad or \qquad is located. This
ordered pair is called the \qquad of the quadratic function.

QUADRATIC FUNCTION

A quadratic function is a function of the form
where a, b, and c are real numbers and \qquad . The domain of a quadratic function is the set of \qquad numbers.

Example 1: Graph using transformations.

a. $f(x)=2 x^{2}+4$.

b. $f(x)=-2 x^{2}+6 x+2$

Now consider any quadratic function $f(x)=a x^{2}+b x+c$.

Based on these results, we conclude...

If \qquad and \qquad then
where the vertex is the ordered pair \qquad . If \qquad the occurs at the vertex and if \qquad the occurs at the vertex.

Example 2: Consider the function $f(x)=-(x-3)^{2}+6$.
a. What is the vertex?
b. What is the axis of symmetry?
c. Find the x-intercept(s).

d. Find the y-intercept.
e. Sketch the graph.

Oftentimes, we are given quadratic equations in the form \qquad .

When this happens, it is easier to use the fact the \qquad and find
\qquad by evaluating \qquad .

PROPERTIES OF THE GRAPH OF A QUADRATIC FUNCTION

$$
f(x)=a x^{2}+b x+c
$$

Vertex: \qquad

Axis of Symmetry: \qquad
If the parabola opens upward, \qquad and the vertex is a point.

If the parabola opens downward, \qquad and the vertex is a point.

Example 3: Find the coordinates of the vertex for the parabola defined by the given quadratic function.
a. $f(x)=3 x^{2}-12 x+1$
b. $f(x)=-2 x^{2}+7 x-4$
c. $f(x)=-3(x-2)^{2}+12$

Example 4: Consider the function $f(x)=3 x^{2}-8 x+2$.
a. What is the vertex?
b. What is the axis of symmetry?

c. Find the x-intercept(s).
d. Find the y-intercept.
e. Sketch the graph.

Example 5: The graph of the function $f(x)=a x^{2}+b x+c$ has vertex at $(1,4)$ and passes through the point $(-1,-8)$. Find a, b, and c.

STEPS FOR GRAPHING A QUADRATIC FUNCTION $f(x)=a x^{2}+b x+c, a \neq 0$

Option 1

1. Complete the square in x to write the equation in the form
2. Graph the function in stages using

Option 2

1. Determine whether the parabola opens up () or down
\qquad
2. Determine the vertex: \qquad
3. Determine the axis of symmetry
4. Find the \qquad if any.
a. If \qquad the graph of the quadratic function has \qquad
\qquad .
b. If \qquad , the \qquad is the
c. If \qquad , there are \qquad
5. Determine an additional point using
6. Plot the points and sketch the graph.

APPLICATIONS

1. Find the point on the line $y=x+1$ that is closest to point $(4,1)$.
2. The John Deere Company has found that the revenue, in dollars, from sales of riding mowers is a function of the unit price p, in dollars, that it charges. If the revenue R is $R(p)=-\frac{1}{2} p^{2}+1900 p$ what unit price p should be charged to maximize revenue? What is the maximum revenue?

3.4: BUILD QUADRATIC MODELS FROM VERBAL DESCRIPTIONS

 When you are done with your homework, you should be able to...π Build Quadratic Models From Verbal Descriptions
WARM-UP: Find the vertex of the quadratic function $f(x)=-2 x^{2}-x+5$.

Example 1: The price p (in dollars) and the quantity x sold of a certain product obey the demand equation $p=-\frac{1}{3} x+100$.
a. Find a model that expresses the revenue R as a function of x.
b. What is the domain of R ?
c. What is the revenue if 100 units are sold?
d. What quantity x maximizes revenue? What is the maximum revenue?
e. What price should the company charge to maximize revenue?

Example 2: A farmer with 2000 meters of fencing wants to enclose a rectangular plot that borders on a straight highway. If the farmer does not fence the side along the highway, what is the largest area that can be enclosed?

Example 3: A parabolic arch has a span of 120 feet and a maximum height of 25 feet. Choose suitable rectangular axes and find an equation of the parabola. Then calculate the height of the arch at points 10 feet, 20 feet, and 40 feet from the center.

Example 4: A projectile is fired at an inclination of 45° to the horizontal, with a muzzle velocity of 100 feet per second. The height h of the projectile is modeled by $h(x)=\frac{-32 x^{2}}{(100)^{2}}+x$ where x is the horizontal distance of the projectile from the firing point.
a. At what horizontal distance from the firing point is the height of the projectile a maximum?
b. Find the maximum height of the projectile.
c. At what horizontal distance from the firing point will the projectile strike the ground?
d. Using a graphing calculator, graph the function $h, 0 \leq x \leq 350$.
e. Use a graphing calculator to verify the results obtained in parts b and c.
f. When the height of the projectile is 50 feet above the ground, how far has it traveled horizontally?

3.5: INEQUALITIES INVOLVING QUADRATIC FUNCTIONS

When you are done with your homework, you should be able to...
π Solve Inequalities Involving a Quadratic Function
WARM-UP: Find the zeroes of $f(x)=3 x^{2}-x-5$.

STEPS TO SOLVE A QUADRATIC INEQUALITY

1. Find the \qquad of the quadratic function \qquad
2. Draw a number line, using the \qquad to separate the number line into intervals.
3. Choose a number from each interval and evaluate the number in
a. If you get a positive result, that interval is the solution for inequalities with \qquad or \qquad .
b. If you get a negative result, that interval is the solution for inequalities with \qquad or \qquad .
4. Write your result in set and interval notation. If you have an "or equals to" situation, the \qquad are included as long as \qquad or
\qquad is not in the interval. If you have more than one interval that
satisfies the inequality, use the word "or" in between the inequalities in setbuilder notation or use the \cup symbol to join the intervals in interval notation.

Example 1: Solve each inequality. Verify your results using a graphing calculator.
a. $x^{2}+3 x-10>0$
b. $6 x^{2} \leq 6+5 x$
c. $2\left(2 x^{2}-3 x\right)>-9$

4.1: POLYNOMIAL FUNCTIONS AND MODELS

When you are done with your homework, you should be able to...
π Identify Polynomial Functions and Their Degree
π Graph Polynomial Functions Using Transformations
π Identify the Real Zeros of a Polynomial Function and Their Multiplicity
π Analyze the Graph of a Polynomial Function
WARM-UP: Use your graphing calculator to graph...
a. $f(x)=x^{2}$
b. $f(x)=-x^{2}$
c. $f(x)=x^{3}$
d. $f(x)=-x^{3}$

POLYNOMIAL FUNCTION

A polynomial function is a function of the form

Where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are \qquad numbers and n is a
\qquad The domain of a polynomial
function is the set of \qquad numbers. The \qquad of
a polynomial function is the \qquad
\qquad of \qquad
that appears. The \qquad polynomial function, \qquad is not assigned a degree.

Example 1: Determine which of the following are polynomial functions. For those that are, state the degree. For those that are not, state why not.
a. $f(x)=4 x^{2}-x^{2 / 3}+1$
b. $g(x)=-x^{10}+\frac{3}{4} x^{4}+x$
c. $f(x)=5 x^{3}-x^{-2}+10$

One objective of this section is to \qquad the graph of a polynomial function. The graph of a polynomial function is both \qquad and
\qquad . A \qquad graph has no \qquad
corners or \qquad . A \qquad graph has no gaps of holes and can be drawn without lifting pencil from paper.

POWER FUNCTIONS

A power function of degree n is a \qquad function of the form

Where a is a real number, \qquad and \qquad is an integer.

Example 2: Give three examples of power functions.
a.
b.
c.

Example 3: Graph $f(x)=x^{2}, f(x)=x^{4}$ and $f(x)=x^{10}$ in the same window on your graphing calculator.

What do you notice about the end behavior of these graphs?

What are the x-intercept(s)?

PROPERTIES OF POWER FUNCTIONS, $f(x)=x^{n}, n$ IS AN EVEN INTEGER

1. f is an \qquad function, so its graph is symmetric with respect to the \qquad .
2. The domain is the set of all \qquad numbers. The range is the set of all \qquad numbers.
3. The graph always contains the points \qquad , \qquad , and \qquad .
4. As the exponent n increases in magnitude, the graph increases more rapidly when \qquad ; but for x near the origin, the graph tends to out and lie \qquad to the \qquad .

Example 4: Graph $f(x)=x^{3}, f(x)=x^{5}$ and $f(x)=x^{11}$ in the same window on your graphing calculator.

What do you notice about the end behavior of these graphs?

What are the x-intercept(s)?

PROPERTIES OF POWER FUNCTIONS, $f(x)=x^{n}, n$ IS AN ODD INTEGER

1. f is an \qquad function, so its graph is symmetric with respect to the \qquad .
2. The domain is the set of all \qquad numbers. The range is the set of all \qquad numbers.
3. The graph always contains the points \qquad , \qquad , and \qquad .
4. As the exponent n increases in magnitude, the graph increases more rapidly when \qquad ; but for x near the origin, the graph tends to out and lie \qquad to the \qquad .

Example 5: Graph by hand using transformations.
a. $f(x)=(2-x)^{4}$

b. $g(x)=\frac{1}{2}(x-1)^{5}-2$

REAL ZEROS

If f is a function and r is a real number for which $f(r)=0$, then r is called a of \qquad .

As a consequence of this definition, the following statements are equivalent:

1. r is a real zero of a polynomial function f.
2. r is $a n$ \qquad of the graph of f.
3. $x-r$ is a \qquad of f.
4. r is a solution to the equation \qquad .

Example 6: Form a polynomial function whose real zeros are $-3,-1,2$, and 5 has degree 4.

REPEATED ZEROS

If $(x-r)^{m}$ is a factor of a polynomial f and $(x-r)^{m+1}$ is not a factor of f, then r is called a \qquad of \qquad
\qquad of f.

TURNING POINTS

If f is a polynomial of degree n, then f has at most \qquad turning points.

If the graph of a polynomial function f has $n-1$ turning points, the degree of f is at least \qquad .

END BEHAVIOR

For \qquad values of x, either positive or negative, the graph of the polynomial function
resembles the graph of the power function

Example 7: Consider the function $f(x)=(x+\sqrt{3})^{2}(x-2)^{4}$.
a. List each real zero and its multiplicity.
b. Determine whether the graph crosses or touches the x-axis at each x intercept.
c. Determine the maximum number of turning points on the graph.
d. Determine the end behavior.

SUMMARY: GRAPH OF A POLYNOMIAL FUNCTION

$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad a \neq 0$
Degree of the polynomial function f : \qquad
Graph is \qquad and \qquad .

Maximum number of turning points: \qquad
At a zero of even multiplicity: The graph of f \qquad the \qquad .

At a zero of even multiplicity: The graph of f \qquad the \qquad .

Between zeros, the graph of f is either above or below the \qquad .

End Behavior: For large \qquad the graph of f behaves like \qquad .

SUMMARY: ANALYZING THE GRAPH OF A POLYNOMIAL FUNCTION

1. Determine the \qquad of the graph of the function.
2. Find the \qquad and \qquad intercepts of the graph of the function.
3. Determine the \qquad of the function and their
\qquad . Use this information to determine whether the graph \qquad or \qquad the x-axis.
4. Use a graphing calculator to graph the function.
5. Approximate the \qquad points of the graph.
6. Use the information in steps 1-5 to draw a complete graph of the function by hand.
7. Find the \qquad and \qquad of the function.
8. Use the graph to determine where the function is \qquad and where it is \qquad .

Example 8: Analyze $f(x)=x^{2}\left(x^{2}+1\right)(x+4)$.

1. End Behavior.
2. Intercepts.
3. Multiplicity.
4. Use a graphing calculator to graph the function.
5. Turning points.
6. Use the information in steps 1-5 to draw a complete graph of the function by hand.
7. Domain and range.
8. Increasing/decreasing intervals.

4.2: THE REAL ZEROS OF A POLYNOMIAL FUNCTION

When you are done with your homework, you should be able to...
π Use the Remainder and Factor Theorems
π Use the Rational Zeros Theorem to List the Potential Rational Zeros of a Polynomial Function
π Find the Real Zeros of a Polynomial Function
π Solve Polynomial Equations
π Use the Theorem for Bounds on Zeros
π Use the Intermediate Value Theorem
W ARM-UP: Divide.

$$
\frac{x^{2}-x+1}{x-1}
$$

The numerator of the expression we just divided was the \qquad in the division problem. The denominator was the \qquad . Our result had a \qquad plus a \qquad in x.

DIVISION ALGORITHM FOR POLYNOMIALS

If $f(x)$ and $g(x)$ denote polynomial functions and if $g(x)$ is a polynomial function whose degree is greater than zero, then there are \qquad polynomial functions $q(x)$ and $r(x)$ such that where $r(x)$ is either the zero polynomial or a polynomial function of degree less than that of $g(x)$.

Let f be a polynomial function. If $f(x)$ is divided by $x-c$, then the remainder is

Example 1: Find the remainder if $f(x)=2 x^{4}-8 x^{3}-10$ is divided by
a. $x-9$
b. $x+1$

FACTOR THEOREM
Let f be a polynomial function. Then $x-c$ is a factor of $f(x)$ if and only if

1. If $f(c)=0$, then \qquad is a \qquad of $f(x)$.
2. If $x-c$ is a factor of $x-c$, then \qquad .

Example 2: Use the Factor Theorem to determine whether the function $f(x)=3 x^{3}-6 x^{2}+4 x-8$ has the factor
a. $x+1$
b. $x-2$

NUMBER OF REAL ZEROS

A polynomial function cannot have more real \qquad than its
\qquad .

RATIONAL ZEROS THEOREM

Let f be a polynomial function of degree 1 or higher of the form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0, a_{0} \neq 0$ where each coefficient is an If \qquad , in lowest terms, is a rational zero of
f, then p must be a \qquad of a_{0} and q must be a \qquad of a_{n}.

Example 3: Determine the maximum number of real zeros and list the potential rational zeros of $f(x)=-2 x^{4}+12 x^{3}+x^{2}-24 x-10$.

SUMMARY: STEPS FOR FINDING THE REAL ZEROS OF A POLYNOMIAL FUNCTION

1. Use the degree of the polynomial function to determine the maximum number of real \qquad .
2. If the polynomial function has \qquad coefficients, use the
\qquad Zeros Theorem to identify those rational numbers that potentially can be \qquad .
3. Graph the polynomial function using your graphing calculator to find the best choice of potential rational zeros.
4. Use the \qquad Theorem to determine if the potential rational zero is a \qquad .If it is, use synthetic division or long division to the polynomial function. Each time that a zero (and thus a \longrightarrow) is found, \qquad step 4 on the
\qquad equation. In attempting to find the zeros, remember to use the factoring techniques that you already !!!

Example 4: Solve the equation $f(x)=6 x^{4}-x^{2}+2$.

Every polynomial function (with real coefficients) can be \qquad into a \qquad of \qquad factors and/or \qquad
\qquad factors.

A polynomial function (with real coefficients) of \qquad degree has at least

BOUNDS ON ZEROS

Let f denote a polynomial function whose leading coefficient is 1 .

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

A bound M on the real zeros of f is the smaller of the two numbers
where \qquad means "choose the largest entry in \{ \}".

Example 5: Find a bound to the zeros of each polynomial function. Use the bounds to obtain a complete graph of f.
a. $f(x)=3 x^{3}-2 x^{2}+x+4$
b. $f(x)=4 x^{4}-12 x^{3}+27 x^{2}-54 x+81$

INTERMEDIATE VALUE THEOREM

Let f denote a continuous function. If $a<b$ and if $f(a)$ and $f(b)$ are of sign, then f has at least one zero between \qquad and

Example 6: Use the Intermediate Value Theorem to show that the function $f(x)=x^{5}-3 x^{4}-2 x^{3}+6 x^{2}+x+2$ has a zero on the closed interval [1.7,1.8]. Approximate the zero rounded to two decimal places.

Example 7: Find the real zeros of f. Use the real zeros to factor f.

a. $f(x)=x^{3}+8 x^{2}+11 x-20$
b. $f(x)=4 x^{4}+15 x^{2}-4$

Example 8: Find the real solutions of each equation.

a. $2 x^{3}-11 x^{2}+10 x+8=0$
b. $x^{4}-2 x^{3}+10 x^{2}-18 x+9=0$

APPLICATIONS

1. Find k such that $f(x)=x^{4}-k x^{3}+k x^{2}+1$ has the factor $x+2$.
2. What is the length of the edge of a cube its volume could be doubled by an increase of 6 centimeters in one edge, an increase of 12 centimeters in a second edge, and a decrease of 4 centimeters in the third edge?

4.3: COMPLEX ZEROS: THE FUNDAMENTAL THEOREM OF ALGEBRA

When you are done with your homework, you should be able to...
π Use the Conjugate Pairs Theorem
π Find a Polynomial Function with Specified Zeros
π Find the Complex Zeros of a Polynomial Function
WARM-UP: Find all complex zeros of $f(x)=5 x^{2}-x+2$.

COMPLEX POLYNOMIAL FUNCTIONS

A variable in the \qquad number system is referred to as a complex variable. A \qquad function f of degree n is of the form
where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are complex numbers, $a_{n} \neq 0, n$ is a nonnegative integer, and x is a complex variable. As before, a_{n} is called the leading coefficient of f. A complex number r is called a complex zero of f if \qquad .
\qquad polynomial function $f(x)$ of degree $n \geq 1$ has at least one complex \qquad .

Every complex polynomial function $f(x)$ of degree $n \geq 1$ can be factored into n linear factors (not necessarily \qquad) of the form where $a_{n}, r_{1}, r_{2}, \ldots, r_{n}$ are complex numbers. That is, \qquad complex polynomial function of degree $n \geq 1$ has \qquad n complex , some of which may \qquad .

CONJUGATE PAIRS THEOREM

Let $f(x)$ be a polynomial function whose coefficients are real numbers. If is a zero of f, the complex conjugate is also a zero of f.

Example 1: Find a polynomial function f of degree 4 whose coefficients are real numbers and that has the zeros $-2,1$, and $2-i$. Use your graphing calculator to verify your result.

Example 2: Find the complex zeros of each polynomial function. Write f in factored form.
a. $f(x)=x^{4}-1$
b. $f(x)=x^{3}+13 x^{2}+57 x+85$

4.4: PROPERTIES OF RATIONAL FUNCTIONS

When you are done with your homework, you should be able to...
π Find the Domain of a Rational Function
π Find the Vertical Asymptotes of a Rational Function
π Find the Horizontal or Oblique Asymptote of a Rational Function
WARM-UP: Graph $f(x)=\frac{1}{x}$.
What is the domain?

What is the range?

RATIONAL FUNCTIONS

A rational function is a function of the form
where p and q are polynomial functions and q is not the \qquad polynomial. The domain of a rational function is the set of all \qquad numbers except those for which the \qquad is \qquad .

Example 1: Find the domain of the following rational functions.
a. $R(x)=\frac{5 x^{2}}{3+x}$
b. $F(x)=\frac{-x(1-x)}{3 x^{2}+5 x-2}$

Example 2: Graph the rational function using transformations.
a. $R(x)=\frac{1}{x-1}+1$

b. $G(x)=\frac{-2}{x^{2}-6 x+9}$

HORIZONTAL AND VERTICAL ASYMPTOTES

Let R denote a function:
If, as \qquad or as \qquad the values of $R(x)$ approach
some \qquad number \qquad , then the line \qquad is a asymptote of the graph of R.

If, as x approaches some number c, the values \qquad then the line is a \qquad asymptote of the graph of R.

The graph of R \qquad intersects a vertical asymptote!!!

A rational function $R(x)=\frac{p(x)}{q(x)}$ in \qquad terms, will have a vertical asymptote \qquad if r is a real zero of the \qquad

Example 3: Find the vertical asymptotes, if any, of the graph of each rational function.
a. $F(x)=\frac{x-1}{x^{2}+4}$
b. $Q(x)=\frac{x}{x^{2}+12 x+32}$
C. $G(x)=\frac{x+10}{x^{2}-100}$

HORIZONTAL AND OBLIQUE ASYMPTOTES

To find horizontal and oblique asymptotes, we need to check out the \qquad behavior of the function. If a rational function $R(x)$ is \qquad that is, the degree of the numerator is \qquad than the degree of the denominator, then as \qquad , or as \qquad the value of
\qquad approaches \qquad . It follows that the line \qquad is a
asymptote of the graph. If a rational function is
\qquad
than or \qquad to the denominator, we write the rational function as the sum of a polynomial function $f(x)$ plus a proper rational function $\frac{r(x)}{q(x)}$ using long division. That is \qquad where $f(x)$ is a polynomial function and $\frac{r(x)}{q(x)}$ is a proper rational function. Since $\frac{r(x)}{q(x)}$ is proper, then \qquad as \qquad or as \qquad . As a result,

So we have three possibilities:

1. If \qquad , a constant, then the line \qquad is a asymptote of the graph of R.
2. If \qquad , \qquad , then the line \qquad is
an \qquad asymptote of the graph of R.
3. In all other cases, the graph of \qquad approaches the graph of ___, and there are no horizontal or oblique asymptotes.

Example 4: Find the vertical, horizontal, and oblique asymptotes, if any, of each rational function.
a. $R(x)=\frac{7 x-8}{6 x+1}$
b. $F(x)=\frac{x^{3}+4}{2 x^{2}-x+6}$
c. $G(x)=\frac{4 x}{9 x^{2}-121}$

4.5: THE GRAPH OF A RATIONAL FUNCTION

When you are done with your homework, you should be able to...
π Analyze the Graph of a Rational Function
π Solve Applied Problems Involving Rational Functions
WARM-UP: Find the zeros of $R(x)=\frac{5 x^{2}+3 x-4}{x^{2}+1}$. Give both the exact result and then round to the nearest tenth.

SUMMARY: ANALYZING THE GRAPH OF A RATIONAL FUNCTION

1. \qquad the numerator and denominator of R. Find the \qquad of the rational function.
2. Write R in \qquad terms.
3. Locate the intercepts of the graph. The \qquad , if any, of $R(x)=\frac{p(x)}{q(x)}$ in lowest terms satisfy the equation \qquad . The
\qquad , if there is one, is \qquad .
4. Locate the \qquad . of the function. The _, if any, of $R(x)=\frac{p(x)}{q(x)}$ in lowest terms are found by identifying the \qquad of \qquad .

Each \qquad of the \qquad gives rise to a
\qquad asymptote.
5. Locate the \qquad or \qquad asymptote, if one exists. Determine \qquad , if any, at which
the graph of R intersects this asymptote. (See Section 4.4, if you forgot©)
6. Use a graphing calculator to graph the function.
7. Use the information in steps 1-6 to draw a complete graph of the function by hand.

Example 1: Analyze $R(x)=\frac{2 x+4}{x-1}$. If the rational function does not have a characteristic listed below, write "none".

1. Factor and identify the domain of R.
2. Write R in lowest terms.
3. Find the
a. x-intercept(s)
b. y-intercept
4. Locate the vertical asymptote(s).
5. Locate the horizontal or oblique asymptote.
6. Use a graphing calculator to graph the function.
7. Use the information in steps 1-6 to draw a complete graph of the function by hand.

Example 2: Analyze $R(x)=\frac{x^{2}+3 x-10}{x^{2}+8 x+15}$. If the rational function does not have a characteristic listed below, write "none".

1. Factor and identify the domain of R.
2. Write R in lowest terms.
3. Find the
a. x-intercept(s)
b. y-intercept
4. Locate the vertical asymptote(s).
5. Locate the horizontal or oblique asymptote.
6. Use a graphing calculator to graph the function.
7. Use the information in steps 1-6 to draw a complete graph of the function by hand.

Example 3: Analyze $R(x)=2 x+\frac{9}{x}$. If the rational function does not have a characteristic listed below, write "none".

1. Factor and identify the domain of R.
2. Write R in lowest terms.
3. Find the
a. x-intercept(s)
b. y-intercept
4. Locate the vertical asymptote(s).
5. Locate the horizontal or oblique asymptote.
6. Use a graphing calculator to graph the function.
7. Use the information in steps 1-6 to draw a complete graph of the function by hand.

APPLICATION

1. The concentration C of a certain drug in a patient's bloodstream t minutes after injection is given by $C(t)=\frac{50 t}{t^{2}+25}$.
a. Find the horizontal asymptote of $C(t)$. What happens to the concentration of the drug as t increases?
b. Using your graphing calculator, graph $C=C(t)$.
c. Determine the time at which the concentration is highest.

4.6: POLYNOMIAL AND RATIONAL INEQUALITIES

When you are done with your homework, you should be able to...
π Solve Polynomial Inequalities Algebraically and Graphically
π Solve Rational Inequalities Algebraically and Graphically
W ARM-UP: Find the domain of $R(x)=\frac{x^{2}-x-3}{4 x^{2}-1}$.

STEPS FOR SOLVING POLYNOMIAL AND RATIONAL INEQUALITIES

1. Write the inequality so that a polynomial or rational expression f is on the left side and \qquad is on the right side in one of the following forms:

For rational expressions, be sure that the left side is written as a
\qquad quotient AND find the \qquad of f.
2. Determine the real numbers at which the expression f equals \qquad and, if the expression is rational, the real numbers at which the expression f is \qquad .
3. Use the numbers found in step 2 to separate the real \qquad line into \qquad .
4. Select a number in each \qquad and evaluate f at that number.
a. If the value of f is \qquad then \qquad for all
numbers \qquad in the interval.
b. If the value of f is \qquad then \qquad for all numbers \qquad in the interval.

If the inequality is not strict \qquad or \qquad), include the solutions of \qquad that are in the \qquad of
\qquad in the solution set. Be sure to \qquad values of
\qquad where \qquad is \qquad .

Example 1: Solve each inequality algebraically. Verify your results using a graphing calculator.
a. $(x-5)(x+2)^{2}>0$
b. $x^{4}<9 x^{2}$
c. $\frac{5}{x-3}<\frac{3}{x+1}$
d. $\frac{x\left(x^{2}+1\right)(x-2)}{(x-1)(x+1)} \geq 0$

5.1: COMPOSITE FUNCTIONS

When you are done with your homework, you should be able to...
π Form a Composite Function
π Find the Domain of a Composite Function
WARM-UP: Consider the function $f(x)=\sqrt{x}$.
a. What is the domain of f ?
b. Evaluate
i. $\quad f(16)$
ii. $f(a)$
iii. $f(5 x)$

What must be true about x in this part for us to evaluate f ?

COMPOSITE FUNCTIONS

Given two functions f and g, the \qquad function, denoted by
$f \circ g($ read as f \qquad with g) is defined by

The domain of \qquad is the set of all numbers \qquad in the
\qquad such that \qquad is in the domain of f.

Example 1: Let $f(x)=-x^{2}+3$ and $g(x)=1-x$. Find a. $(f \circ g)(1)$
b. $(g \circ f)(1)$
c. $(f \circ f)(-2)$
d. $(g \circ g)(-1)$

Example 2: Let $f(x)=-x^{2}+3$ and $g(x)=1-x$. Find
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$
c. $(f \circ f)(x)$
d. $(g \circ g)(x)$
e. $\frac{f(x+h)-f(x)}{h}$

Example 3: Let $f(x)=\sqrt{x-1}$ and $g(x)=x^{3}$. What is the domain of $f \circ g$?

Example 4: Let $f(x)=\frac{5}{2 x-7}$ and $g(x)=x+2$. What is the domain of $f \circ g$?

Example 5: Let $f(x)=x^{5}$ and $g(x)=\sqrt[5]{x}$. Find
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$

What did you notice? What do you think this means?

Example 6: Find functions f and g so that $H(x)=\left(1+x^{2}\right)^{6}$

Example 7: Find functions f and g so that $H(x)=|5 x-8|$

APPLICATION

The spread of oil leaking from a tanker is in the shape of a circle. If the radius r (in feet) of the spread after t hours is $r(t)=200 \sqrt{t}$, find the area A of the oil slick as a function of the time t.

5.2: ONE-TO-ONE FUNCTIONS; INVERSE FUNCTIONS

When you are done with your homework, you should be able to...
π Determine Whether a Function is One-to-One
π Determine the Inverse of a Function Defined by a Map or a Set of Ordered Pairs
π Obtain the Graph of the Inverse Function from the Graph of the Function
π Find the Inverse of a Function Defined by an Equation
WARM-UP: Use the vertical line test to determine if the graphs of the relations are functions.
a.
b.

DETERMINE WHETHER A FUNCTION IS ONE-TO-ONE

A function f is one-to-one if no \qquad in the \qquad is the
\qquad of more than one \qquad in the \qquad . A
function is not one-to-one if \qquad different elements in the domain correspond to the \qquad element in the range.

Example 1: Determine whether the following functions are one-to-one.
a. For the following function, the domain represents the age of four males and the range represents the number of vehicles owned.

AGE	NUMBER OF VEHICLES
16	0
38	2
43	1
60	1

b. $\{(-6,1),(-1,3),(0,-1),(4,8)\}$

DEFINITION OF A ONE-TO-ONE FUNCTION

A function is one-to-one if and \qquad inputs in the correspond to \qquad
\qquad outputs in the \qquad . That is, if \qquad and \qquad are
two different inputs of a function of f, then f is one-to-one if -

THEOREM: THE HORIZONTAL LINE TEST

If every \qquad line intersects the graph of f in one point, then f is one-to-one.

Example 2: Which of the following graphs represent one-to-one functions?
a.

b.

THEOREM

A function that is \qquad on an interval I is a one-to-one function on I.

A function that is \qquad on an interval I is a one-to-one function on I.

DEFINITION: INVERSE FUNCTION OF f

Suppose that f is a one-to-one function. Then, to each x in the domain of f, there is exactly \qquad in the \qquad (because
f is a \qquad); and to each \qquad in the \qquad of
f, there is exactly \qquad in the domain (because f is
\qquad
). The from the of f back to the \qquad of f is called the function of f. The symbol is used to
denote the \qquad of f. This symbol is read " f inverse".

Example 3: Find the inverse of each one-to-one function. State the domain and range of each inverse function.
a.

AGE	MONTHLY COST OF LIFE INSURANCE
30	$\$ 7.09$
40	$\$ 8.40$
45	$\$ 11.29$

Domain:
Range:
b. $\{(-6,1),(-1,3),(0,-1),(4,8)\}$

Domain:
Range:

TWO FACTS ABOUT A ONE-TO-ONE FUNCTION f AND ITS INVERSE f^{-1}

1. \qquad of \qquad $=$ \qquad of \qquad
\qquad of \qquad $=$ \qquad of \qquad
2. \qquad $=$ \qquad where \qquad is in the domain of \qquad . =___, where \qquad is in the domain of \qquad .

Example 4: Show that each function is the inverse of the other. $f(x)=3 x-8$ and $g(x)=\frac{x+8}{3}$

GRAPHS OF A FUNCTION AND ITS INVERSE FUNCTION

There is a \qquad between the graph of a one-to-one function
\qquad and its inverse \qquad . Because inverse functions have ordered pairs with the coordinates \qquad , if the point \qquad is on the graph
of \qquad the point \qquad is on the graph of \qquad . The points
\qquad and \qquad are \qquad with respect to the line \qquad .

Therefore, the graph of \qquad is a \qquad of the graph
of \qquad about the line \qquad .

THEOREM

The graph of a one-to-one function f and the graph of its \qquad
f^{-1} are \qquad with respect to the line \qquad

Example 5: Use the graph of f below to draw the graph of its inverse function.

POINTS ON	POINTS ON
THE GRAPH OF	
f	THE GRAPH OF
f^{-1}	

STEPS FOR FINDING THE INVERSE OF A FUNCTION DEFINED BY AN EQUATION

The equation of the inverse of a function f can be found as follows:

1. Replace \qquad with \qquad in the equation for \qquad .
2. Interchange \qquad and \qquad .
3. Solve for \qquad . If this equation does not define \qquad as a function of \qquad , the function \qquad does not have an \qquad function and this
procedure ends. If this equation does define \qquad as a function of \qquad the function \qquad has an inverse function.
4. If \qquad has an inverse function, replace \qquad in step 3 with \qquad We can verify our result by showing that \qquad and \qquad .

Example 6: Find an equation for $f^{-1}(x)$, the inverse function.
a. $f(x)=4 x$
b. $f(x)=\frac{2 x-3}{x+1}$

APPLICATION

The function $T(g)=1700+0.15(g-17000)$ represent the 2011 federal income tax T (in dollars) due for a "married filing jointly" filer whose modified adjusted gross income is g dollars, where $17000 \leq g \leq 69000$.
a. What is the domain of the function T ?
b. Given that the tax due T is an increasing linear function of modified adjusted gross income g, find the range of the function T.
c. Find adjusted gross income g as a function of federal income tax T. What are the domain and range of this function?

Section 5.3: EXPONENTIAL FUNCTIONS

When you are done with your homework you should be able to...
π Evaluate Exponential Functions
π Graph Exponential Functions
π Define the Number e
π Solve Exponential Equations

W ARM-UP:

1. Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form $a+b i$.

$$
\left(x^{2}-2\right)^{2}-\left(x^{2}-2\right)=6
$$

2. Use a calculator to evaluate
a. $3^{2.2}$
d. $3^{2.2361}$
b. $3^{2.24}$
e. $3^{\sqrt{5}}$
c. $3^{2.236}$

LAWS OF EXPONENTS

If s, t, a, and b are real numbers with \qquad and \qquad then

EXPONENTIAL GROWTH

Suppose a function f has the following properties:

1. The value of f doubles with every 1 -unit increase in the independent variable x, and
2. The value of f at $x=0$ is 10 , so \qquad .

EXPONENTIAL FUNCTIONS

An exponential function is a function of the form
where \qquad is a \qquad real number (\qquad). \qquad and is a real number. The domain of f all real numbers, the base a is the \qquad
\qquad , we call C the \qquad

THEOREM

For an exponential function \qquad where \qquad and \qquad if \qquad is any real number, then

Example 1: Determine if the given function is an exponential function.
a. $f(x)=3^{x}$
b. $g(x)=(-4)^{x+1}$

Example 2: Determine whether the given function is linear, exponential, or neither. For those that are linear, find a linear function that models the data. For those that are exponential, find an exponential function that models the data.

a. | x | $y=f(x)$ |
| :---: | :---: |
| -2 | $\frac{1}{4}$ |
| -1 | $\frac{1}{2}$ |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |

b.

x	$y=f(x)$
-2	-1
-1	3
0	7
1	11
2	15

C.

x	$y=f(x)$
0	0
1	1
4	2
9	3
16	4

Example 3: Sketch the graph of each exponential function.
a. $f(x)=2^{x}$

x	$f(x)$	$(x, f(x))$

b. $g(x)=2^{-x}$

x	$g(x)$	$(x, g(x))$

How are these two graphs related?

Example 4: Sketch the graph of each exponential function.
a. $f(x)=3^{x}$

x	$f(x)$	$(x, f(x))$

b. $g(x)=3^{x-1}$

x	$g(x)$	$(x, g(x))$

How are these two graphs related?

PROPERTIES OF THE EXPONENTIAL FUNCTIONS $f(x)=a^{x}, a>1$

1. The domain is the set of all real numbers or \qquad using interval notation. The range is the set of all \qquad real numbers or
\qquad using interval notation.
2. There are no \qquad ; The y-intercept is \qquad .
3. The \qquad is a \qquad asymptote as

4. \qquad where \qquad is an \qquad
function and is \qquad .
5. The graph of f contains the points \qquad
\qquad and
\qquad -
6. The graph of f is \qquad and \qquad with
no \qquad or \qquad .
**Now look back at part a of each of the examples 3 and 4.

PROPERTIES OF THE EXPONENTIAL FUNCTIONS $f(x)=a^{x}, 0<a<1$

1. The domain is the set of all real numbers or \qquad using interval notation. The range is the set of all \qquad real numbers or
\qquad using interval notation.
2. There are no \qquad ; The y-intercept is \qquad .
3. The \qquad is a \qquad asymptote as

4. \qquad where \qquad is an \qquad
function and is \qquad .
5. The graph of f contains the points \qquad
\qquad and
\qquad -
6. The graph of f is \qquad and \qquad with
no \qquad or \qquad .
**Now look back at example 3, part b.

n
1
2
5
10
100
1000000000

The irrational number \qquad approximately \qquad , is called the \qquad base. The function \qquad is called the exponential function.

THE NUMBER e

The number e is defined as the number that the expression
approaches as \qquad In Calculus, this is expressed using notation as

Example 5: Sketch the graph of each exponential function.
a. $f(x)=e^{x}$

x	$f(x)$	$(x, f(x))$

b. $g(x)=-e^{x}$

x	$g(x)$	$(x, g(x))$

How are these two graphs related?

EXPONENTIAL EQUATIONS

Example 6: Solve each equation. Verify your results using a graphing calculator.
a. $8^{x}=8^{-2}$
b. $9^{-x+15}=27^{x}$
c. $\left(e^{4}\right)^{x} \cdot e^{x^{2}}=e^{12}$

APPLICATIONS

1. The normal healing of wounds can be modeled by an exponential function. If A_{0} represents the original area of the wound and Aequals the area of the wound, then the function $A(n)=A_{0} e^{-0.35 n}$ describes the area of the wound after n days following an injury when no infection is present to retard the healing. Suppose that a wound initially had an area of 100 square millimeters.
a. If healing is taking place, how large will the area of the wound be after 3 days?
b. How large will it be after 10 days?
2. Suppose that a student has 500 vocabulary words to learn. If a student learns 15 words after 5 minutes, the function $L(t)=500\left(1-e^{-0.00611}\right)$ approximates the number of words L that a student will learn after t minutes.
a. How many words will the student learn after 30 minutes?
b. How many words will the student learn after 60 minutes?

Section 5.4: LOGARITHMIC FUNCTIONS

When you are done with your homework you should be able to...
π Change Exponential Statements to Logarithmic Statements
π Evaluate Logarithmic Expressions
π Determine the Domain of a Logarithmic Function
π Graph Logarithmic Functions
π Solve Logarithmic Equations
W ARM-UP:

1. Solve.
$\left(\frac{1}{64}\right)^{2 x}=16^{x^{2}-5}$
2. Use the graph of $f(x)=2^{x}$ to graph $f^{-1}(x)$.

POINTS ON	
THE GRAPH OF	
f	POINTS ON
THE GRAPH OF	
	f^{-1}

LOGARITHMIC FUNCTION

The logarithmic function to the base \qquad where \qquad and \qquad , is denoted by \qquad (read as " \qquad is the \qquad
to the base \qquad of \qquad ") and is defined by

The domain of the logarithmic function \qquad is \qquad or
\qquad in interval notation.

INTERESTING FACTS...
\qquad of the logarithmic function $=$ \qquad of the
\qquad function.
of the logarithmic function $=$ \qquad of the
\qquad function.

PROPERTIES
(DEFINING EQUATION: \qquad

Domain: \qquad Range:

Example 1: Change each exponential statement to an equivalent statement involving a logarithm.
a. $16=4^{2}$
b. $e^{2.2}=M$
c. $3^{x}=4.6$

Example 2: Change each logarithmic statement to an equivalent statement involving an exponent.
a. $\log _{3}\left(\frac{1}{9}\right)=-2$
b. $\log _{6} 2=x$
c. $\log _{e} x=5$

Example 3: When working this example, remember that the expression $\log _{a} x$ translates as "the power to which we raise a to get x is". Find the exact value of:
a. $\log _{6}\left(\frac{1}{216}\right)$
b. $\log _{3} 81$
C. $\log _{e} e$

Example 4: Find the domain of each logarithmic function.
a. $F(x)=\log _{4}(x+7)$
b. $h(x)=\log _{e}\left(x^{2}-16\right)$
c. $\log _{7}(-x)$

PROPERTIES OF THE LOGARITHMIC FUNCTION $f(x)=\log _{a} x$

1. The domain is the set of \qquad real numbers or \qquad using interval notation. The range is the set of all \qquad numbers or \qquad using interval notation.
2. The x-intercept of the graph is \qquad ; there is no \qquad
3. The \qquad (_) is a \qquad asymptote of
the graph.
4. A logarithmic function is \qquad if \qquad and
\qquad if \qquad .
5. The graph of f contains the points \qquad , \qquad and
\qquad -
6. The graph of f is \qquad and \qquad with
no \qquad or \qquad .
**See Warm-up 2 to see the graph of $f(x)=\log _{2} x$.

Example 5: Sketch the graph of the logarithmic function.
a. $f(x)=\log _{3} x$

x	$f(x)$	$(x, f(x))$

b. $f(x)=\log _{3}(x-4)$

x	$g(x)$	$(x, g(x))$

How are these two graphs related?

If the base of a logarithmic function is \qquad then we have the
function. We often use this function in applications. The symbol \qquad denotes the natural logarithmic function. This comes from the Latin phrase logarithmus naturalis.

NATURAL LOGARITHMIC FUNCTION

If the base of a logarithmic function is the number \qquad then we have the
\qquad function. If the base of the logarithmic function is not indicated, it is understood to be \qquad .

COMMON LOGARITHMIC FUNCTION

\square
if and only if

Example 6: Use a calculator to evaluate each expression. Round your answer to three decimal places.
a. $\frac{\ln 5}{8}$
b. $\frac{\log \frac{2}{3}}{-0.2}$
c. $\frac{\log 15+\log 20}{\ln 15+\ln 20}$

Example 7: Solve each equation. Verify your results using a graphing calculator.
a. $\log _{5} x=3$
b. $\log _{3}(3 x-2)=2$
c. $\ln e^{-2 x}=8$
d. $\log _{6} 36=5 x+3$
e. $\log x^{2}=4$
f. (Use your graphing calculator to solve this one(:)) $4 e^{x+1}=5$

APPLICATIONS

1. The normal healing of wounds can be modeled by an exponential function. If A_{0} represents the original area of the wound and A equals the area of the wound, then the function $A(n)=A_{0} e^{-0.35 n}$ describes the area of the wound after n days following an injury when no infection is present to retard the healing. Suppose that a wound initially had an area of 100 square millimeters.
a. If healing is taking place, after how many days will the wound be onehalf its original size?
b. How long before the wound is 10% of its original size?
2. Psychologists sometimes use the function $L(t)=A\left(1-e^{-k t}\right)$ to measure the amount L learned at time t. The number Arepresents the amount to be learned, and the number k measures the rate of learning. Suppose that a student has an amount A of 200 vocabulary words to learn. A psychologist determines that the student learned 20 vocabulary words after 5 minutes.
a. Determine the rate of learning k.
b. Approximately how many words will the student have learned after 10 minutes?
c. After 15 minutes?
d. How long does it take for the student to learn 180 words?

Section 5.5: PROPERTIES OF LOGARITHMS
When you are done with your homework, you should be able to...
π Work with the Properties of Logarithms
π Write a Logarithmic Expression as a Sum or Difference
π Evaluate a Logarithm Whose Base is Neither 10 Nor e
π Graph a Logarithmic Function Whose Base is Neither 10 Nor e W ARM-UP:

1. Show that $\log _{a} 1=0$.
2. Show that $\log _{a} a=1$.

PROPERTIES OF LOGARITHMS

Let ___ and ___ be positive real numbers with ____, and let ___ be any real number.
1.
2.

Example 1: Evaluate.
a. $\log _{6} 6$
c. $\log _{9} 1$
b. $\log _{12} 12^{4}$
d. $7^{\log _{7} 24}$

THE PRODUCT RULE

Let ______, and ___ be positive real numbers with \qquad

The logarithm of a product is the \qquad of the \qquad .

Example 2: Expand each logarithmic expression.
a. $\log _{6}(6 x)$
b. $\ln (x \cdot x)$

THE QUOTIENT RULE

Let ______ and ___ be positive real numbers with \qquad .

The logarithm of a quotient is the \qquad of the \qquad

Example 3: Expand each logarithmic expression.
a. $\log \frac{1}{x}$
b. $\log _{4} \frac{x}{2}$

THE POWER RULE

Let \qquad , __, and \qquad be positive real numbers with \qquad and let \qquad be any real number.

The logarithm of a power is the \qquad of the \qquad and the \qquad .

Example 4: Expand each logarithmic expression.
a. $\log x^{2}$
b. $\log _{5} \sqrt{x}$

PROPERTIES FOR EXPANDING LOGARITHMIC EXPRESSIONS

For \qquad and \qquad :

1. \qquad $=\log _{b} M+\log _{b} N$
2. \qquad $=\log _{b} M-\log _{b} N$
3. \qquad $=p \log _{b} M$

Example 5: Expand each logarithmic expression.
a. $\log x^{4} \sqrt[3]{y-1}$
b. $\log _{2} \sqrt{\frac{x^{2}+5}{12 y^{6}}}$

PROPERTIES FOR CONDENSING LOGARITHMIC EXPRESSIONS

For \qquad and \qquad

1. \qquad $=\log _{b}(M N)$
2. \qquad $=\log _{b} \frac{M}{N}$
3. \qquad $=\log _{b} M^{p}$

Example 6: Write as a single logarithm.
a. $3 \ln x-\frac{1}{4} \ln (x-2)$
b. $\log _{4} 5+12 \log _{4}(x+y)$

For any logarithmic bases \qquad and \qquad and any positive number \qquad , \qquad :
If
\qquad then \qquad .

If \qquad then \qquad

THE CHANGE-OF-BASE PROPERTY

If ___, and ___ are positive real numbers, then

Why would we use this property?
Example 7: Use common logarithms to evaluate $\log _{5} 23$.

Example 8: Use natural logarithms to evaluate $\log _{5} 23$.

What did you find out???

APPLICATION

1. If $f(x)=\log _{a} x$, show that the difference quotient

$$
\frac{f(x+h)-f(x)}{h}=\log _{a}\left(1+\frac{h}{x}\right)^{1 / h}, h \neq 0 .
$$

Section 5.6: LOGARITHMIC AND EXPONENTIAL EQUATIONS
When you are done with your homework, you should be able to...
π Solve Logarithmic Equations
π Solve Exponential Equations
π Solve Logarithmic and Exponential Equations Using a Graphing Calculator W ARM-UP:

Solve.
$\frac{x^{2}-x}{5}=\frac{2}{5}$

SOLVING EXPONENTIAL EQUATIONS BY EXPRESSING EACH SIDE AS A POWER OF THE SAME BASE
If ___ then \quad __

1. Rewrite the equation in the form \qquad .
2. Set \qquad .
3. Solve for the variable.

Example 1: Solve.
a. $10^{x^{2}-1}=100$
b. $4^{x+1}=8^{3 x}$

USING LOGARITHMS TO SOLVE EXPONENTIAL EQUATIONS

1. Isolate the \qquad expression.
2. Take the \qquad logarithm on both sides for base \qquad Take
the \qquad logarithm on both sides for bases other than 10 .
3. Simplify using one of the following properties:
4. Solve for the variable.

Example 2: Solve.
a. $e^{2 x}-6=32$
b. $\frac{3^{x-1}}{2}=5$
c. $10^{x}=120$

USING EXPONENTIAL FORM TO SOLVE LOGARITHMIC EQUATIONS

1. Express the equation in the form \qquad .
2. Use the definition of a logarithm to rewrite the equation in exponential form:
3. Solve for the variable.
4. Check proposed solutions in the \qquad equation. Include in the
solution set only values for which \qquad .

Example 3: Solve.
a. $\log _{3} x-\log _{3}(x-2)=4$
b. $\log x+\log (x+21)=2$

USING THE ONE-TO-ONE PROPERTY OF LOGARITHMS TO SOLVE LOGARITHMIC EQUATIONS

1. Express the equation in the form \qquad . This form involves a _ logarithm whose coefficient is \qquad on each side of the equation.
2. Use the one-to-one property to rewrite the equation without logarithms:
3. Solve for the variable.
4. Check proposed solutions in the \qquad equation. Include in the
solution set only values for which \qquad and \qquad .

Example 4: Solve.
a. $2 \log _{6} x-\log _{6} 64=0$
b. $\log (5 x+1)=\log (2 x+3)+\log 2$

Example 5: Use a graphing calculator to solve each equation. Express your answer rounded to two decimal places.
a. $e^{2 x}=x+2$
b. $\ln 2 x=-x+2$
c. $\log _{2}(x-1)-\log _{6}(x+2)=2$

Example 6: Solve each equation. Express irrational solutions in exact form and as a decimal rounded to three decimal places.
a. $\log _{2}(3 x+2)-\log _{4} x=3$
b. $\frac{e^{x}+e^{-x}}{2}=3$

Section 5.7: FINANCIAL MODELS

When you are done with your homework, you should be able to...
π Determine the Future Value of a Lump Sum of Money
π Calculate Effective Rates of Return
π Determine the Present Value of a Lump Sum of Money
π Determine the Rate of Interest or Time Required to Double a Lump Sum of Money

WARM-UP: If you borrow $\$ 8,000$, and, after 10 months, pay off the loan in the amount of $\$ 8,500$, what per annum rate of interest was charged?

SIMPLE INTEREST FORMULA

If a principal of P dollars is borrowed for a period of t years at a per annum interest rate r, expressed as a \qquad the interest I charged is

** Simple Interest

FORMULAS FOR COMPOUND INTEREST

After \qquad years, the balance \qquad in an account with principal \qquad and annual interest rate \qquad (in decimal form) is given by the following formulas:

1. For ___ compounding interest periods per year:
2. For continuous compounding:
${ }^{* *} A$ is referred to as the \qquad value of the account and P is referred to as the \qquad value.

Example 1: Find the accumulated value of an investment of $\$ 5000$ for 10 years at an interest rate of 6.5% if the money is
a. compounded semiannually:
b. compounded monthly:
c. compounded continuously:

EFFECTIVE RATE OF INTEREST

The \qquad of \qquad of an
investment earning an annual interest rate \qquad is given by

Compounding \qquad times per \qquad $:$

Example 2: Find the principal needed now to get each amount; that is, find the present value.
a. To get $\$ 800$ after $3 \frac{1}{2}$ years at 7% compounded monthly.
b. To get $\$ 800$ after $3 \frac{1}{2}$ years at 7% compounded continuously.

Example 3: Find the effective rate of interest.
a. For 5% compounded quarterly.
b. For 5% compounded continuously.

Example 4: Determine the rate that represents the better deal. 9% compounded quarterly or 8.8% compounded daily.

APPLICATIONS

1. How many years will it take to for an initial investment of $\$ 25,000$ to grow to $\$ 80,000$? Assume a rate of interest of 7% compounded continuously.
2. Colleen and Bill have just purchased a home for $\$ 650,000$, with the seller holding a second mortgage of $\$ 100,000$. They promise to pay the seller $\$ 100,000$ plus all accrued interest 5 years from now. The seller offers them three interest options on the second mortgage.
a. Simple interest at 12% per annum
b. $11 \frac{1}{2} \%$ interest compounded monthly
c. $11 \frac{1}{4} \%$ interest compounded continuously

Which option is best for Colleen and Bill?

Section 5.8: EXPONENTIAL GROWTH AND DECAY MODELS; NEWTON'S LAW; LOGISTIC GROWTH AND DECAY MODELS

When you are done with your homework, you should be able to...
π Find Equations of Populations That Obey the Law of Uninhibited Growth
π Find Equations of Populations That Obey the Law of Decay
π Use Newton's Law of Cooling
π Use Logistic Models
WARM-UP: Graph $A(t)=500 e^{0.02 t}$ and $A(t)=500 e^{-0.02 t}$ on your graphing calculator. How are these graphs related?

EXPONENTIAL GROWTH AND DECAY MODELS

The mathematical model for exponential growth or decay is given by

- If \qquad the function models the amount, or size, of a
\qquad entity. \qquad is the \qquad amount, or size, of the growing entity at time \qquad , is the amount at time \qquad , and \qquad is a constant representing the \qquad rate.
- If \qquad the function models the amount, or size, of a entity. \qquad is the \qquad amount, or size, of the decaying entity at time \qquad -1 \qquad is the amount at time \qquad , and \qquad is a constant representing the \qquad rate.

Example 1: A culture of bacteria obeys the law of uninhibited growth.
a. If N is the number of bacteria in the culture and t is the time in hours, express N as a function of t.
b. If 500 bacteria are present initially, and there are 800 after 1 hour, how many will be present in the culture after 5 hours?

Example 2: The population of a Midwestern city follows the exponential law.
a. If N is the population of the city and t is time in years, express N as a function of t.
b. If the population doubled in size over an 18-month period and the current population is 20,000, what will the population be 2 years from now?

Example 3: A bird species in danger of extinction has a population that is decreasing exponentially. Five years ago the population was at 1400 and today only 1000 of the birds are alive. Once the population drops below 100, the situation will be irreversible. When will this happen?

Example 4: A fossilized leaf contains 70\% of its normal amount of carbon 14.
a. How old is the fossil? Use 5700 years as the half-life of carbon 14.
b. Using your graphing calculator, graph the relation between the percentage of carbon 14 remaining and time.
c. Using INTERSECT determine the time that elapses until half of the carbon 14 remains.
d. Verify the answer in part a.

NEWTON'S LAW OF COOLING

The temperature u of a heated object at a given time t can be modeled by the following function:
where T is the constant temperature of the surrounding medium, \qquad is the initial temperature of the heated object, and \qquad is a \qquad constant.

Example 5: A thermometer reading $72^{\circ} \mathrm{F}$ is placed in a refrigerator where the temperature is a constant $38^{\circ} \mathrm{F}$.
a. If the thermometer reads $60^{\circ} \mathrm{F}$ after 2 minutes, what will it read after 7 minutes?
b. How long will it take before the thermometer reads 39° F?
c. Using your graphing calculator, graph the relation between temperature and time.
d. Using INTERSECT determine the time needed to elapse before the thermometer reads $45^{\circ} \mathrm{F}$.
e. TRACE the function for large values of time. What do you notice about the temperature, y ?

LOGISTIC MODEL

In a Logistic model, the population P after time t is given by function:
where a, b, and c are constants with \qquad and \qquad . The model is a growth model if \qquad ; the model is a \qquad model if
(a) Density dependence: growth rate is a function of population size.

(b) Data from laboratory experiments

PROPERTIES OF THE LOGISTIC MODEL

1. The domain is the set of all \qquad numbers. The range is the interval
\qquad where c is the
2. There are no \qquad ; the \qquad is \qquad .
3. There are \qquad — asymptotes:
\qquad and \qquad _.
4. is an \qquad function if \qquad and a function if \qquad .
5. There is an \qquad point where \qquad equals \qquad of the carrying capacity. The inflection point is the point on the graph where the graph changes from being curved \qquad to
\qquad for \qquad functions and the point where the graph changes from being curved \qquad to \qquad for \qquad functions.

Example 6: Often environmentalists capture an endangered species and transport the species to a controlled environment where the species can produce offspring and regenerate its population. Suppose that six American bald eagles are captured, transported to Montana, and set free. Based on experience, the environmentalists expect the population to grow according to the model $P(t)=\frac{500}{1+82.33 e^{-0.162 t}}$, where t is measured in years.
a. Determine the carrying capacity of the environment.
b. What is the growth rate of the bald eagle?
c. Use a graphing calculator to graph $P=P(t)$.
d. What is the population after 3 years?
e. When will the population be 300 bald eagles?
f. How long does it take the population to reach $\frac{1}{2}$ of the carrying capacity?

Section 11.1: SYSTEMS OF LINEAR EQUATIONS; SUBSTITUTION AND ELIMINATION

When you are done with your homework you should be able to...
π Solve Systems of Linear Equations by Substitution
π Solve Systems of Linear Equations by Elimination
π Identify Inconsistent Systems of Equations Containing Two Variables
π Express the Solution of a System of Dependent Equations Containing Two Variables
π Solve Systems of Three Equations Containing Three Variables
π Identify Inconsistent Systems of Equations Containing Three Variables
π Express the Solution of a System of Dependent Equations Containing Three Variables

W ARM-UP:

Graph $5 x+3 y=21$ and $-x+2 y=0$ using your graphing calculator.

What is the point of intersection?

What math problem have you solved?

SYSTEMS OF LINEAR EQUATIONS AND THEIR SOLUTIONS

We have seen that all \qquad in the form \qquad are straight \qquad when graphed. \qquad such equations are called a
\qquad of \qquad
\qquad or a
\qquad
\qquad . A \qquad to a system
of two \qquad equations in two \qquad is an that \qquad
\qquad equations in the \qquad .

Example 1: Determine whether the given ordered pair is a solution of the system.
a.
$(-2,-5)$
$6 x-2 y=-2$
$3 x+y=-11$
b.
$(10,7)$
$6 x-5 y=25$
$4 x+15 y=13$

sOLVING LINEAR SYSTEMS BY GRAPHING

The \qquad of a \qquad of linear equations consists of values for the \qquad that are \qquad of each
\qquad in the \qquad To \qquad
a system means to find \qquad solutions of the \qquad .

TYPES OF SOLUTIONS

2 Equations, 2 Variables

Coincident Lines

Infinitely many points in common. Solution: $\{(x, y): y=m x+b\}$

3 Equations, 3 Variables

Inconsistent Systems

Example 2: Use the graph below to find the solution of the system of linear equations.

RULES FOR OBTAINING AN EQUIVALENT SYSTEM OF EQUATIONS

1. \qquad any two equations of the system.
2. \qquad or \qquad each side of an equation
by the same \qquad constant.
3. \qquad any equation in the system by the \qquad
or \qquad of that equation and a \qquad
multiple of any other equation in the system.

Example 3: Solve the following systems of linear equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.
a.

$$
\begin{aligned}
& 5 x+2 y=-5 \\
& 3 x-y=-14
\end{aligned}
$$

b.

$$
\begin{aligned}
& y=5 x-3 \\
& y=2 x-\frac{21}{5}
\end{aligned}
$$

C.

$$
\begin{aligned}
& -x+3 y=4 \\
& 2 x-6 y=-8
\end{aligned}
$$

Example 3: Solve the following systems of linear equations by the elimination method. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use set notation to express solution sets.
a.

$$
\begin{aligned}
& x+y=6 \\
& x-y=-2
\end{aligned}
$$

b.

$$
\begin{aligned}
& 3 x-y=11 \\
& 2 x+5 y=13
\end{aligned}
$$

c.

$$
\begin{aligned}
& 4 x-2 y=2 \\
& 2 x-y=1
\end{aligned}
$$

Example 4: Solve each system of equations.

a.

$$
\left\{\begin{aligned}
2 x+y & =-4 \\
-2 y+4 z & =0 \\
3 x-2 z & =-11
\end{aligned}\right.
$$

b.

$$
\left\{\begin{aligned}
x-y+z & =-4 \\
2 x-3 y+4 z & =-15 \\
5 x+y-2 z & =12
\end{aligned}\right.
$$

APPLICATIONS

1. The length of a fence required to enclose a rectangular field is 3000 meters. What are the dimensions of the field if it is known that the difference between its length and width is 50 meters?
2. A movie theater charges $\$ 9$ for adults and $\$ 7$ for students. On a day when 325 people paid an admission, the total receipts were $\$ 2495$. How many who paid were adults? How many were students?
3. Kelly has $\$ 20000$ to invest. As her financial planner, you recommend that she diversify into three investments: Treasury bills that yield 5% simple interest, Treasury bonds that yield 7\% simple interest, and corporate bonds that yield 10% simple interest. Kelly wishes to earn $\$ 1390$ per year in income. Also, Kelly wants her investment in Treasury bills to be $\$ 3000$ more than her investment in corporate bonds. How much money should Kelly place in each investment?
4. The average airspeed of a single-engine aircraft is 150 mph . If the aircraft flew the same distance in 2 hours with the wind as it flew in 3 hours agains \dagger the wind, what was the wind speed?
5. Find real numbers a, b, and c so that the graph of the function $y=a x^{2}+b x+c$ contains the points $(-1,-2),(1,-4)$, and $(2,4)$.

11.5: PARTIAL FRACTION DECOMPOSITION

When you are done with your homework, you should be able to...
π Decompose $\frac{P}{Q}$, where Q Has Only Nonrepeated Linear Factors
π Decompose $\frac{P}{Q}$, where Q Has Repeated Linear Factors
π Decompose $\frac{P}{Q}$, where Q Has a Nonrepeated Irreducible Quadratic Factor
π Decompose $\frac{P}{Q}$, where Q Has a Repeated Irreducible Quadratic Factor
W ARM-UP:
Add $\frac{3}{x(x-1)^{2}}$ and $\frac{5}{x-1}$.

(CASE 1) Q HAS ONLY NONREAPEATED LINEAR FACTORS

Under the assumption that Q has only \qquad linear factors, the polynomial Q has the form
where no two of the numbers \qquad are equal. In this case, the partial fraction decomposition of \qquad is of the form
where the numbers \qquad are to be determined.

Example 1: Write the partial fraction decomposition of each rational expression.
a.

$$
\frac{3 x}{(x+2)(x-1)}
$$

b.

$$
\frac{x^{2}-x-8}{(x+1)\left(x^{2}+5 x+6\right)}
$$

(CASE 2) Q HAS REAPEATED LINEAR FACTORS

If the polynomial Q has a \qquad linear factor, say n is an \qquad then, in the partial fraction decomposition of \qquad , we allow for the terms where the numbers \qquad are to be determined.

Example 2: Write the partial fraction decomposition of each rational expression.

$$
\frac{x+1}{x^{2}(x-2)}
$$

(CASE 3) Q CONTAINS A NONREAPEATED IRREDUCIBLE QUADRATIC

 FACTORIf Q contains a__ irreducible quadratic factor of the form _, then, in the partial fraction decomposition of
\qquad allow for the term
where the numbers \qquad are to be determined.

Example 3: Write the partial fraction decomposition of each rational expression.

$$
\frac{1}{\left(x^{2}+4\right)(x+1)}
$$

(CASE 4) Q CONTAINS A REAPEATED IRREDUCIBLE QUADRATIC FACTOR

If the polynomial Q contains a \qquad irreducible quadratic factor of the form \qquad , \qquad n is an
\qquad then, in the partial fraction decomposition of \qquad allow for the terms
where the numbers \qquad are to be determined.

Example 4: Write the partial fraction decomposition of each rational expression.
a.

$$
\frac{x^{3}+1}{\left(x^{2}+16\right)^{2}}
$$

b.

$$
\frac{x^{2}+1}{x^{3}+x^{2}-5 x+3}
$$

